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Common periodical health check-ups include several clinical test items with affordable cost. However, these
standard tests do not directly indicate signs of most lifestyle diseases. In order to detect such diseases, a
number of additional specific clinical tests are required, which increase the cost of the health check-up. This
study aims to enrich our understanding of the common health check-ups and proposes a way to estimate
the signs of several life style diseases based on the standard tests in common examinations without per-
forming any additional specific tests. In this manner, we enable a diagnostic process, where the physician
may prefer to perform or avoid a costly test according to the estimation carried out through a set of common
affordable tests. To that end, the relation between standard and specific test results is modeled with a mul-
tivariate kernel density estimate. The condition of the patient regarding a specific test is assessed following
a Bayesian framework. Our results indicate that the proposed method achieves an overall estimation ac-
curacy of 84%. In addition, an outstanding estimation accuracy is achieved for a subset of high-cost tests.
Moreover, comparison with standard artificial intelligence methods suggests that our algorithm outperforms
the conventional methods.

Our contributions are as follows: (i) promotion of affordable health check-ups, (ii) high estimation accu-
racy in certain tests, (iii) generalization capability due to ease of implementation on different platforms and
institutions, (iv) flexibility to apply to various tests and potential to improve early detection rates.
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cations]: Data mining; I.2.1 [Applications and Expert Systems ]: Medicine and science; J.3 [Life and
Medical Sciences]: Medical information systems
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1. INTRODUCTION AND MOTIVATION
Health care industry is one of the earliest adopters of information technolo-
gies (IT) [Yasnoff et al. 2000]. In health care industry, IT has a broad application do-
main ranging from administration, to data collection, documentation and processing.
An important application of IT in health care is clinical decision support systems.

Clinical decision support (CDS) systems are interactive tools, which are designed
to assist the physicians in clinical decision tasks. CDS systems are used in various
decision tasks in clinical medicine such as diagnosis of a disease, diagnostic process
or patient management [Musen et al. 2006]. Among these various decision tasks, this
study addresses in particular the application of CDS in diagnostic processes.

Diagnostic process refers to the selection of ordered tests or procedures and deter-
mining the value of the results relative to associated risks or costs [Musen et al. 2006].
Therefore, the decision task involves not only the analysis of patient data but also de-
termination of the necessary tests and procedures adopting an integrated standpoint
of risk and cost.

In general, CDS systems are composed of three main parts as illustrated in Fig-
ure 1 [Berner 2006]. The first part is the knowledge base, which is a set of known
rules and associations such as drug-drug interactions or symptom-disease relations.
The knowledge base is built based on the expert physician opinion and clinical practice
guidelines [Garg et al. 2005]. The second part is called the inference engine, which con-
tains the algorithms for combining the rules or associations in the knowledge base with
actual patient data. Popular methods for building inference engines involve Bayesian
networks, production rule systems and cognitive models of clinical reasoning. The com-
bination of knowledge base and inference engine defines an expert system [Cowell
et al. 2007]. Eventually, the third part, namely the communication mechanism, es-
tablishes an interaction interface between the system and the user, i.e. the physician.
The communication mechanism enables inputting patient data into the system and
reporting the output of the system to the user.

Expert system

Knowledge base

Drug-drug interactions

Symptom-disease relations

...

Inference engine

Bayesian networks

Production rule systems

Cognitive models of clinical
reasoning

...

Communication
mechanism

Inputting patient data

Reporting system output

Fig. 1. Structural organization of a knowledge based clinical decision support system.

In this study we propose an inference engine to be employed by a CDS system in
diagnostic processes. We benefit from the opinions of the expert physicians in build-
ing our knowledge base. Nevertheless, the main contribution of this study lies in the
construction of the reasoning mechanism, which processes the health check-up data to
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discover relationships between test values and patients’ conditions. In addition to high
estimation accuracy, we emphasize cost efficiency, generalization and flexibility in our
design.

The outline of the paper is as follows. Section 2 provides a detailed overview of the
relevant studies in literature. Section 3 describes the main components of the proposed
method, introduces the terminology and explains the flow of the algorithm. Section 4
elaborates on the clinical database analyzed in this study. Subsequently, Sections 5
and 6 define the details of the estimation method. Section 7 presents the performance
rates of the proposed method and of the standard pattern recognition methods together
with a discussion on performance. Finally, Section 8 explains the distinguishing advan-
tages and potential uses of the proposed method.

2. RELATED WORK
The improvement in quality of service and productivity introduced by the IT tools is as-
certained by long term studies, which examine a relatively long time window in respect
to the emergence and development span of IT tools [Menon et al. 2000]. A recent survey
examining the evolution of CDS systems over five decades shows that recent CDS sys-
tems aim producing expert-level advisories, whereas early studies target rationalizing
medicine by excelling in complex diagnostics tasks and outperforming clinicians [Pe-
leg and Tu 2006]. Haux points out that health care will continue to take consider-
able advantage of the rapid and consistent improvements in IT in the future [Haux
2002]. A decade ago, Haux et al. described three requirements for effective use of IT in
health care by the year 2013 as follows: (i) computerization of patient records with uni-
form terminology and standardized documentation, (ii) integration of knowledge into
clinical work routine, and (iii) comprehensive use of patient data for clinical and epi-
demiological research [Haux et al. 2002]. Hitherto, certain improvements have been
archived in terms of these points but obviously the operation in practice is far from
being perfect.

Since CDS attracts more attention with the increasing use of computer sys-
tems in health care, numerous CDS systems have been proposed over the last few
decades [Kaur and Wasan 2006; d’Aquin et al. 2006]. The key issue which these works
deal with is processing the immense amount of clinical “data” so as to lead to “knowl-
edge” [van Bemmel et al. 1997]. To that end, it is necessary to introduce models and
methods to make sense of this data and attain knowledge out of it [Dwivedi et al. 2003].
In this respect, data mining methods are frequently used in CDS systems [Castellani
and Castellani 2003; Fayyad et al. 1996].

Pawlak describes a rule base decision support tool, which can handle uncertainty
and vagueness [Pawlak 1997]. To that end, a rough set approach is proposed. Never-
theless, this approach is not appropriate to medical framework, since medical probes
are related often with nonlinear relationships and the rough set approach might easily
fail in high dimensions. As opposed to exact and inflexible purely rule based methods,
Kumar et al. proposed a hybrid approach using case-based and rules-based reason-
ing, which can handle problems with high complexity [Kumar et al. 2009]. In this
manner, they propose making use of the tacit knowledge, which is subjective and non-
structured, as well as explicit knowledge, which is structured [Bose 2003]. Kong et al.
provide an overview for such clinical decision support systems that has an uncertainty
handling capability [Kong et al. 2008]. Rakus-Andersson et al. handle the problem
from another point of view and propose an approximate reasoning based on the pa-
tient’s clinical symptom levels and evaluate the operation risk [Rakus-Andersson and
Jain 2009].

As well as the design of CDS systems, performance evaluation is a challenging topic
too. Rahimi et al. provide a review on the evaluation studies of health information
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systems in [Rahimi and Vimarlund 2007]. They point out that it is hard to quantify
the performance of IT methods in health care. Besides, it is not possible to isolate the
impact of IT from the other changes in the health care environment. Nevertheless,
there are several common points such as quality of care, user and patience acceptance
and satisfaction as well as financial effect, which are considered in most evaluation
studies. DesRoches et al. consider these listed points in conducting a national survey
in the US for evaluating electronic health records [DesRoches et al. 2008]. This survey
reveals that although those physicians who often use such systems report high levels
of satisfaction and increase in quality of service, the portion of these physicians is not
large. Most health care professionals view financial cost of system implementation as
the biggest barrier against extensive use of these tools. Additional problems are lack
of training of technical staff and interoperability gap.

Kawamoto et al. examine seventy studies to identify the features which are critical
in obtaining a successful CDS systems [Kawamoto et al. 2005]. They conclude that
the success of those CDS systems has high correlation with four features, namely,
automatic generation of decision support as part of the clinician work flow, delivery of
decision support at the time and place of decision, delivery of actionable decisions, and
computer integration.

Although most evaluation studies focus in identifying the features which make the
system successful, some studies focus on failures and investigate the reasons. For in-
stance, Littlejohns et al. describe the problems faced in installation of computerized
integrated hospital information system in South Africa as opposed to implementation
difficulties in highly developed countries such as US [Littlejohns et al. 2003]. They dis-
cuss on the failure of this project and conclude that the major reasons include social
and professional culture of the health care organizations, cost of use education, under-
estimation of process complexity and installation duration, and the lack of learning
from past failures. Heeks discusses the reasons of failure of health information sys-
tems at a larger scale and provides a review of studies reporting failures [Heeks 2006].
The reasons of failure are concluded to be gaps between design and reality, public and
private sectors or countries.

3. OVERVIEW
We examine the existing CDS systems to learn the general trend, the desired at-
tributes, and common factors in success as well as reasons of failures. In the light of
these observations, we propose a new methodology, which distinguishes from the clas-
sical design framework in particular with its emphasis on cost efficiency and flexibility
to be extended on different platforms and medical cases.

Our main goal is to provide a foresight to the physician regarding the condition of a
patient (client) in terms of a clinical test or procedure, before it is actually performed.
In the rest of this study, we use the term test or test item to describe these laboratory
examinations or procedures, where clinical specimens are analyzed in order to get in-
formation about the health of a patient as pertaining to the diagnosis, treatment, or
prevention of a disease. In light of the estimation carried out by the proposed algo-
rithm, the physician may choose to order or skip these tests.

To that end, we examine the results of a set of clinical test items and try to estimate
the state of the patient in terms of the test item of interest. The state of the patient
refers his/her condition with respect to the reference range, which is a pair of lower
and upper bounds of a test value. Reference ranges are used to estimate whether a
test result’s deviation from the mean is a result of a random variability or a result of
an underlying disease or condition [Harris 1974; Noe 1985]. In this respect, this study
distinguishes two sorts of state. Namely, provided that the test values of a patient
are within the reference range, it is said that the deviation is random and thus the
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patient has an inside state. Otherwise, the patient is said to have an outside state.
We strongly emphasize that this study estimates the state of the patient with respect
to the reference range as inside or outside, rather than estimating the exact value or
range of values of the test item of interest.

In the rest of this study, we refer to the test item of interest, whose state is es-
timated, as the estimated item. The set of test items, which we base our estimation
on, are referred as the source items. In order to uncover the relationship between the
estimated item and source items, we consider the Cyber Integrated Medical Infras-
tructure (CIMI) database, which is an extensive collection of well-organized clinical
test records [Abe et al. 2007; Shinozawa et al. 2009].

First, we expose the CIMI database to several pre-processing operations to enable
a numerical computation and comparison. Pre-processing is composed of translation
and alignment stages as illustrated in Figure 3. In translation, the non-numeric test
results are converted to numeric values, whereas in alignment the test results are
normalized to a common standard.

CIMI database

Preprocess

Translation

Alignment

Estimation

Test item selection

Outside states

Pretest
probability

Likelihood

Bayesian post-
probability

Estimated state

Estimated

items

Source

items

Fig. 2. Overview of the algorithm.

The estimation stage, which adopts a Bayesian approach, constitutes the essential
element of the algorithm. Firstly, two sets of clinical test items are formed in the test
item selection module, i.e. the estimated item and source items. In this stage, we im-
pose the cost efficiency and flexibility conditions. Subsequently, the pretest probability
is obtained using the previous values of the estimated item. The likelihood function is
derived utilizing the values of the source items. Finally, a Bayesian post-probability is
derived and the condition of the patient regarding the estimated item is assessed.
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In what follows, we first elaborate on the CIMI database and then describe details
of each stage of the algorithm.

4. CIMI DATABASE
We design and test our estimation method using the Cyber Integrated Medical Infras-
tructure database, which is developed by the International Research and Educational
Institute for Integrated Medical Sciences [Abe et al. 2007; Shinozawa et al. 2009].

The CIMI Database involves medical examination values of a total of 122 test items
recorded between August 2005 and October 2009. A total of 579 clients are monitored.
Since ethics is an essential issue in health informatics, we paid utmost attention to vol-
unteer participation and privacy [Goodman and Miller 2006]. The data is collected and
stored with the consent of every individual client and is analyzed anonymously keep-
ing the identification details confidential. Several specifications regarding the number
of clients, average age, test frequency, and number of records are provided in Table I.

Table I. Specifications of the CIMI database.

Male Female Total
Number of clients 260 319 579
Number of records 2311 1911 4222
Average age 56.7± 9.9 56.9± 11.1 56.8± 10.5

Test frequency (in months) 3.2± 1.2 3.3± 1.5 3.2± 1.3

Since this study aims designing a cost effective inference mechanism for a clinical
decision support tool, we carry out a categorization of test items based on their cost. We
categorize the test items into three classes: low-cost test items, medium-cost test items
and high-cost test items. Table II lists the test items in low-cost and medium-cost cat-
egories. There are 48 test items in low-cost category. For the sake of brevity, we group
the 48 low-cost test items into three, i.e. blood, urine and biochemical examination,
and present the costs of these three groups together with the number of tests items in
each group (7, 8, and 33, respectively). In addition, there are 6 test items in medium
cost category. The remaining 68 test items in the database are regarded as high-cost
test items and their total cost may exceed 1000 USD, whereas 9.25 USD is necessary
to carry out the low-cost tests and 201 USD is required to perform medium-cost tests.
The costs are given according to the Japanese health care system.

Table II. Categorization of test items according to their cost.

Category Tests Number of test items Cost (USD)

Low-cost
Blood examination 7 3
Urine examination 8 2.80
Biochemical examination 33 3.45

Medium-cost
T-Cell CD2 1 50
NSE 1 30
Lipoprotein IDL 1 20
Thymidine Kinase 1 45
Apolipoprotein-B 1 16
Pepsinogen I/II 1 40
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5. PRE-PROCESSING
The pre-processing stage has two goals. The first one is to translate the test values
which are provided as non-numeric values to numeric values. The second goal is to
normalize the data recorded according to different standards.

5.1. Data translation
The results of most tests are provided as numeric values. However, several tests’ re-
sults are expressed as non-numeric values. For instance, in serum tumor marker test,
the existence of the Pepsinogen total factor is given in terms of semi-quantitative mea-
surements, which define an approximation of the quantity of this substance without
giving the exact amount. The results are expressed in terms of the degree of positivity
or negativity, i.e. (−), (+−) , (+) or (+2).

These non-numeric values are first quantified as -1, 0, 1, 2. However, such a dis-
cretization may easily lead to a singular covariance matrix as described in Section 6.
In order to obtain a larger variation among the translated values, we make use of the
definition of reference ranges. A well-accepted approach to define reference ranges is
to assume a normal distribution for the test values and taking two standard deviations
on either side of the mean concerning the reference group. In this manner, 95% of the
samples are within the lower and upper limits, whereas 2.5% of the samples are below
the lower limit and 2.5% of the samples are above the upper limit [Shultz et al. 1985].

For instance, Figure 3 demonstrates the distribution of Cholinesterase enzyme val-
ues for male patients in the CIMI database. Assuming a Gaussian distribution, the
model illustrated with the blue dashed curve is obtained. The percentile of the sam-
ples below and above the reference ranges defined by the physicians are 1% and 2.4%
for these test values. For the Gaussian distribution approximation, the percentile of
the samples below the lower limit is 1.68% and the percentile of the samples above the
upper limit is 1.22%.
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Fig. 3. The distribution of Cholinesterase enzyme measurements for male patients. The Gaussian distribu-
tion model and the reference ranges are illustrated with blue dashed line and a pair of red lines, respectively.

ACM Transactions on Management Information Systems, Vol. 0, No. 0, Article 00, Publication date: 2012.



00:8 M. Sakata et al.

Similarly, we translate the discrete values making an additional assumption that
each of them is a rounded approximation of a random variable coming from a normal
distribution. In other words, a normal distribution is centered around each discrete
value -1, 0, 1, and 2. The standard deviation of the normal distributions are picked
according to the three-sigma rule[Pukelsheim 1994]. In general, a random variable
coming from Gaussian distribution N (µ, σ) is within kσ around the expected value
µ with a probability of erf(k/

√
2). In our case, the centers of these distributions are

assumed to be separated by six sigmas such that 99.7% of the samples fall within the
corresponding range [Abramowitz et al. 1964]. Therefore, the condition that we enforce
is tighter than the one usually used for reference ranges, in order to force the variables
to be mapped into concerning intervals. Subsequently, for each discrete observation a
random number is drawn from the concerning distribution.

An example of data translation concerning the Pepsinogen total factor test is illus-
trated in Figure 4. The blue lines indicate the original discretized values, whereas the
red points denote the transformed numbers. As clearly seen in the figure, the proposed
transformation scheme maps the discrete values almost always into separate bands.

Translated
Sem i-quant itat ive

-1.5
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0.5

1.5

2.5

0 100 200 300 400
Test  index

T
e

st
 v

a
lu

e

Fig. 4. The quantized semi-quantitative values of Pepsinogen total factor test are translated using the
Gaussian distribution assumption. The figure illustrates 400 translations with 100 point concerning each
discrete value.

Furthermore, in several other tests such as urinary sediment or mucus cord system
tests, the results are expressed in terms of an interval instead of the absolute mea-
sured value, namely < 1, 1 ∼ 4, 5 ∼ 9, etc. Similar to the previous case, we translate
these values by positioning a normal distribution at the center of each of these inter-
vals, where the standard deviation is picked according to the three-sigma rule. Then,
for each observation we draw a random number from the concerning distribution.
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5.2. Data alignment
Reproducibility and standardization as well as overcoming the inter-operability gap
are key issues which need to be addressed in design of clinical decision support sys-
tems [Trigo et al. 2012]. Provided that standardized tests and measures are employed,
the operation range of the method is extended drastically enabling application across
various institutions and platforms [Zaidi et al. 2002].

Therefore, we use commonly performed medical tests as a source basis. Neverthe-
less, due to the update of test standards, the range of values for several test items
changed throughout the collection of the database and a direct comparison is not pos-
sible at all times. For instance, the results of liver bile and pancreas tests recorded
before and after April 2006 are not directly comparable due to an update of test stan-
dards. In order to overcome this disparity, we propose a normalization scheme for the
test values recorded according to different standards.

Let us assume the test values recorded according to the old standard (before April
2006) are denoted by y and the concerning reference range is between ymin and ymax.
Let us further consider that according to the new standard, the reference range is
shifted to xmin and xmax. The test values recorded according to the old standard are
mapped to the new range using a linear interpolation. Namely, the mapped value x is
obtained by the following equation,

x = (y − ymin)
xmax − xmin
ymax − ymin

+ xmin.

6. STATE ESTIMATION
We aim to estimate whether a particular test item will have an inside or outside state
before actually performing this test. For this purpose, we utilize the past values of this
test item and the past and current values of a set of low-cost test items.

Let the estimated item and the set of source items be denoted by e and S, re-
spectively. The set S is composed of individual source items sn, i.e. S = {sn}. Here,
1 ≤ n ≤ N as n {S} = N , where n {.} gives the number of elements of a set.

Suppose that xec(τ) stands for the value of test item e of client c at time τ . The state
corresponding to this test value is determined by the following,

bec(τ) =

{
0, xec ∈ Ie,
1, xec 6∈ Ie,

where Ie stands for the reference interval of e, “0” denotes an inside state and “1” de-
notes an outside state. In the CIMI database, inside states are observed 473039 times,
whereas outside states are observed 92709 times. Clearly inside states constitute the
majority of observations.

We define another variable, namely accumulated state, which reflects the history of
the patient’s states over a given interval of length w. The accumulated state is denoted
by rec(τ) and is computed as the sum of the states bec(τ) over the accumulation window,
i.e. the last w time instants,

rec(τ) =

w−1∑
t=0

bec(τ − t). (1)

Figure 5 presents an example for a series of test results and the corresponding states
and accumulated states, where w is picked as 3. Obviously, due the causality property
of Equation 1, we cannot compute values for time instants τ ≤ w − 1. Moreover, the
accumulated state rec(τ) can take values between 0 and w, since states are accumulated
over w time instants. In this study, we model the probability density function (pdf) of
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Fig. 5. Example of a computation of accumulated states for accumulation window w = 3.

each of thew possible accumulated states using a multivariate kernel density estimate.

To that end, we define a few additional variables for simplifying the notation. By
listing the accumulated states of a test item e concerning client c between time t = w
and t = τ , we obtain the vector of accumulated states, Rec,

Rec(τ) = [rec(τ) rec(τ − 1) · · · rec(w)]. (2)

The variable Rec is used in computing the pretest probability of the accumulated state
of the estimated test item in the following time instant.

In addition, we define another variable, namely ASc (τ), by smoothing the values in
S,

ASc (τ) = [as1c (τ) as1c (τ) · · · asNc (τ)],

where the values asic are the smoothed values of xsic by applying a moving average over
each w consecutive samples,

asnc (τ) =

∑w−1
t=0 xsnc (τ − t)

w
.

The set of variables ASc (t) , 0 ≤ t ≤ τ , is used in determining the centers of the each of
the w multivariate kernel density estimates.

Using the above defined variables, we estimate the probability that the accumulated
state of a test item e at time τ + 1 will be k. In other words, we do not directly estimate
the state of e at τ + 1, bec(τ + 1). Instead, we estimate the value of its accumulated state
rec(τ +1). Then, assuming that the states of the previous tests of e are provided, we can
estimate its next state by comparing the estimated accumulated state rec(τ+1) and the
sequence of past states bec(t), τ − w + 2 ≤ t ≤ τ .

In what follows, we describe the details of the estimation procedure. Section 6.1
elaborates on the selection source test items, whereas Sections 6.2 and 6.3 describe
the computation of pretest probability and likelihood. Finally, Section 6.4 explains the
computation of Bayesian post probability and the derivation of estimated state from
the accumulated state.
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6.1. Test item selection
In content developments of clinical decision support systems, a large number of health
care professionals and information scientists are involved such as pharmacists, clin-
ical analysts, software developers, physicians and administrators [Sittig et al. 2010].
In order to design and test the system in an effective manner, the interaction and col-
laboration between the members of this multi-disciplinary team has to be achieved.
Recent studies show that an important part of the clinical communication space con-
stitutes of direct interaction between clinicians [Coiera 2000]. Thus, in order to exploit
the advantages of personal media, we work in close contact with physicians. In partic-
ular, the preliminary basis of this study is structured according to the advises of the
physicians. Namely, test items which are used as a source for estimation are selected
according to a rule base criteria advised by the physicians.

Initially, the low cost items listed in Table II are considered as a source set for es-
timation. Subsequently, the same estimation scheme is carried out once more, this
time using both low-cost and medium-cost test items (See Table II). By comparing the
two estimation performances, we assess the contribution of medium-cost test items in
estimation performance.

6.2. Pretest probability
Let us assume that P (rec(τ + 1) = k) denotes the pretest probability that the accu-
mulated state of a test item e concerning client c will be k at time τ + 1. In Bayesian
sense, the pretest probability is derived based on the evidence provided by the past
observations.

P (rec(τ + 1) = k) =
n {rec = k|rec ∈ Rec(τ)}

n {Rec(τ)}
,

where Rec is the accumulated state vector given by Equation 2.

6.3. Estimation of likelihood based on kernel density
Kernel density estimation is a non-parametric mean to estimate the pdf of a random
variable [Parzen 1962]. Basically, the pdf is estimated by positioning a kernel function
around each observation.

Figure 6 illustrates an example in one dimension. The instances of the random vari-
able v are denoted by a red dot on the x-axis and a Gaussian kernel depicted by a blue
dashed curve is centered at each instance of v. The variance of the Gaussian distri-
bution, i.e. the bandwidth of the kernel function, plays a crucial role in the resulting
estimate. The bandwidth, which is a free parameter, defines the amount and orienta-
tion of smoothing induced. Therefore, it controls the trade-off between the bias of the
estimator and its variance. Kernel density estimation is preferred due to its smooth-
ness and continuity properties, as opposed to the histogram based estimates which are
discrete and discontinuous, but its bandwidth has to be adjusted carefully [Scott 1979].

We propose to compute the likelihood using the standard Gaussian kernel. Let Gek
denote the set of index pairs of clients and time instants for which the accumulated
state of a test item e is k. Namely,

Gek = {c, τ |rec(τ) = k} .

The cardinality of the set Gek is denoted by Nek, i.e. n
{
Gek

}
= Nek. We use Gek to

define the locations of kernel centers.
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Fig. 6. Example for kernel density estimation in one dimension.

The likelihood of observing the source set S given Rec(τ), is given by

P
(
ASc′(τ

′)|Rec(τ)
)

=
1

hekNek

∑
c,τ∈Gek

K

(
ASc′(τ

′)−ASc (τ)

hek

)
,

where K(.) stands for the multidimensional kernel function and hek represents its
bandwidth. For computing hek, we use Silverman’s rule of thumb [Silverman 1986],

hek =
1.06Σ
5
√
Nek

,

where Σ is parametrized by a diagonal covariance matrix,

Σ =


σ1 0 . . . 0
0 σ2 . . . 0
...

...
. . .

...
0 0 . . . σn

 .
Here, σi is the standard deviation of {xsic (τ)} ,∀c, τ .

6.4. Calculation of estimated state
The post-probability of observing each accumulated state is computed using the above
defined pretest probability and likelihood functions in the Bayesian sense [Bishop et al.
2006]. Let pek denote the post-probability that the accumulated state of a test item e at
time τ + 1 is k. The expected value of the accumulated state is computed as follows:

r̃ec(τ + 1) =

w−1∑
k=0

kpek. (3)

Obviously, the estimated value of accumulated state r̃ec(τ+1) is not necessarily discrete,
whereas the actual values of accumulated states are always discrete as illustrated in
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Figure 5. In order to obtain a discrete estimation, we apply the following operation:

˜̃rec(τ + 1) =

{
round(r̃ec(τ + 1)) 0 ≤ r̃ec(τ + 1) ≤ w − 1,

w w − 1 < r̃ec(τ + 1).
(4)

This is a basic rounding operation except for the positive bias towards outside states,
where r̃ec(τ + 1) is very close to the accumulation window value w.

The estimated value of the next state bec(τ + 1) is derived from the estimated value
of accumulated state ˜̃rec(τ + 1) r∼ec in the following manner. We assume that client c
had this test e at least w − 1 times previously and that we know the states of these
previous test results bec(τ−t), 0 ≤ t ≤ w − 2 . The accumulated state estimate ˜̃rec(τ+1)
can have a value, which is either equal to or 1 larger than the sum of previous states∑w−2
t=0 bec(τ − t). If it is equal, this indicates that the state in the next time instant

bec(τ + 1) is 0, i.e. an inside state. If it is 1 larger, it means bec(τ + 1) is 1, i.e. an outside
state. However, neither Equation 3 nor Equation 4 guarantees that this condition will
be satisfied. Therefore, we modify this criteria as follows:

bec(τ + 1) =

{
0 ˜̃rec(τ + 1) ≤

∑w−1
t=1 bec(τ − t),

1 otherwise.

The reason for the bias in Equation 4 is closely related this problem. As stated in Sec-
tion 6, in the CIMI database inside states are observed more often than outside states.
Therefore, the Bayesian approach favors inside states over outside states. However, in
our diagnostic process framework, the costs of having different mistakes are not equal.

In medical informatics, these mistakes are quantified with sensitivity and speci-
ficity. Sensitivity is the fraction of disease cases that are correctly identified as dis-
ease. Specificity, on the other hand, is the non-disease cases that are identified as
non-disease [Shin et al. 2006]. These terms are commonly used in medical informatics.
Moreover, they correspond to equivalent terms in computer science or pattern recogni-
tion. Namely, sensitivity is often referred as true positive rate or recall rate, whereas
specificity is referred as true negative rate [Provost et al. 1998].

Estimating a state which is actually outside, as inside, yields in overlooking the
disease and thus a delay in diagnosis. Therefore, we give higher priority in detection
of true positives than true negatives, or equivalently we can say that sensitivity is
rated with higher importance than specificity. In case of Equation 4, estimating an
accumulated state, which is actually w, as w−1 means that the future state is definitely
estimated wrong. Moreover, a patient who always had outside states in the past, needs
to be observed with more attention and precaution using this approach. Hence, we
use the bias given in Equation 4 in order to detect accumulated states w as much as
possible.

7. EVALUATION
We test our method by setting the accumulation window w to 3. In Table I, it is seen
that the total number of test records is 4222. However, as mentioned in Section 6, we
cannot make an estimation for τ ≤ w. By setting the accumulation window to 3, the
number of time instants, for which we carry out an estimation, becomes 3080.

In each of these 3080 time instants, we perform a certain number of estimations.
Namely, we perform an estimation for each test item, which is not in the source set S.
Besides, for evaluating the proposed method in terms of cost, we propose testing the
algorithm with two sorts of source sets, namely the low cost items (Low) and low and
medium cost items (Low+Medium) (See Table II). In both cases, we estimate the states
of the 68 high cost tests items.
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7.1. Estimation performance of the proposed method
The performance of the proposed method in estimating states and accumulated states
is presented in Table III. As seen in the table, accumulated states of “0” and “3” are
estimated with higher accuracy than “1” and “2”. For instance in (Low), detection rates
of 87.28% and 76.30% are achieved in distinguishing “0” and “3”, respectively, as op-
posed to 36.46% and 36.17% for “1” and “2”. This is partially due to the fact that “0” and
“3” indicate preservation of previous states. In other words, if the patient had outsides
states in the past, he is likely to have an outside state at the following time instant,
namely an accumulated state of “3”. It is the similar case for inside states, i.e. “0”.
However, it is clearly more challenging to estimate state changes, which are observed
when the accumulated state is “1” or “2”.

Table III. Performance of the proposed method.

Accumulated states(%) States(%)

Source set 0 1 2 3 Tot Out In Tot

Low 87.28 36.46 36.17 76.30 80.32 60.87 87.38 84.14

Low+Medium 81.74 35.52 35.55 77.24 75.79 62.61 82.00 79.63

In addition, we investigate the failures in detection of accumulated states and illus-
trate what sort of confusions occur. The confusion matrix given in Table IV indicates
that non-zero accumulated states are confused most often with “0”. This means that
most of the wrong estimations are underestimation, i.e. estimating outside states as
inside. This is due the dominance of inside states in observations as stated in Section 6.

Table IV. Confusion table for (Low) and (Low+Medium).

Estimated value of accumulated states

Low(%) Low+Medium(%)

0 1 2 3 0 1 2 3

T
ru

e
va

lu
e

of
ac

cu
m

ul
at

ed
st

at
es 0 87.28 0.31 0.05 12.36 81.74 0.43 0.06 17.77

1 52.04 36.46 0.92 10.58 49.64 35.52 0.89 13.95

2 42.94 9.40 36.17 11.49 40.81 8.88 35.55 14.77

3 15.63 2.10 5.97 76.30 15.11 1.96 5.75 77.24

Furthermore, by looking at the detection rates of the proposed method on the right
hand side of Table III, it is observed that inside states are estimated with higher ac-
curacy than outside states, i.e. 87.38 > 60.87 and 82.00 > 62.61. Since specificity is
the fraction of non-disease cases that are identified as non-disease and sensitivity is
the fraction of disease cases that are correctly identified as disease as mentioned in
Section 6.4, the proposed method has a very high specificity but sensitivity is not as

ACM Transactions on Management Information Systems, Vol. 0, No. 0, Article 00, Publication date: 2012.



An Inference Engine for Estimating Outside States of Clinical Test Items 00:15

high as specificity . However, the overall performance rates in distinguishing outside
and inside states appear to be satisfactory (84.14% and 79.63%), since inside states con-
stitute the majority of the observations and thus have larger influence on the overall
rate.

Additionally, comparing the two rows of Table III, it is observed that performance
rates for (Low) and (Low+Medium) are not significantly different. Considering the cost
of the low and medium cost items given in Table II, it is reasonable to perform the pro-
posed estimation scheme using only low cost items for obtaining cost efficiency while
keeping similar estimation performance.

Moreover, we investigate the test items whose states are estimated with lowest accu-
racy. As mentioned in Section 6.4, we give higher priority to detection of disease cases
than non-disease cases, since overlooking a disease is more risky. Therefore, we sort
the performance rates with respect to outside state detection rate.

Table V. Test items with lowest outside state estimation accuracy.

Low Low+Medium

Test name Out In # of Out Test name Out In # of Out

(%) (%) (out of 3080) (%) (%) (out of 3080)

Basophil 20.00 86.81 40 Basophil 25.00 80.92 40

CA 72-4 34.09 87.17 220 CA 72-4 38.64 81.78 220

Urobilinuria 38.89 86.70 38 Urobilinuria 39.47 81.10 38

SI 40.24 89.09 917 Neutrophil 40.60 80.59 133

Gamma seminoprotein 40.54 86.80 111 SI 41.98 84.97 917

Table V illustrates the test items, for which the proposed method fails to estimate
the outside state most often. For the 5 test items with lowest performance, it is seen
in Table V that detection rates of outside state change between 20.00% and 40.24%,
which are significantly lower than the overall outside state detection rates of 60.87%
and 62.61% given in Table III. One reason for these low rates is related to the number
of outside state observations. As mentioned at the beginning of the section, by pick-
ing w = 3 we need to estimate states of 3080 time instants. Among these 3080 time
instants, we need to have enough instances of outside state in order to capture the
relation between the source items and these estimated items. However, it is seen from
Table V that some items like Basophil and Urobilinuria have a total number of 40 and
38 instances of outside state, respectively. Obviously these numbers are quite low with
respect to the total number of observations, 3080. Therefore, we are not able to model
the relation between these items and the source set. However, certain test items such
as SI, which have relatively high number of outside observations, are not estimated in
a reliable manner with the proposed method.

There are several potential reasons for this. For instance, according to Linkov et al.
CA 72-4 has a low intra-class consistency [Linkov et al. 2009]. In addition, Guadagni
et al. argue that CA 72-4 has a sensitivity of approximately 40% to 50% opposed to a
specificity of about 95%[Guadagni et al. 1995]. Moreover, some medical tests such as
SI are interpreted not only individually but also together with the results of certain

ACM Transactions on Management Information Systems, Vol. 0, No. 0, Article 00, Publication date: 2012.



00:16 M. Sakata et al.

other tests. In the future, these important combinations will be accounted for in our
scheme.

In Table V, in addition to estimation rates of outside states, we also present the
estimation rates of inside states. These rates ascertain that the algorithm does not
have any classification bias. In other words, inside states of these tests are estimated
with a similar performance to the one concerning the entire CIMI database. Namely,
the rates in Table V change between 86.70% and 89.09% for (Low) and 80.59% and
84.97% for (Low+Medium), which are not significantly different than the values given
in Table III (87.38% and 82.00%). Therefore, the proposed method detects inside states
in a fair manner and the low detection accuracy of outside states is not due to any bias
of the algorithm to classify all observations as inside.

Table VI. Test items with highest outside state estimation accuracy.

Low Low+Medium

Test name Out In # of Out Test name Out In # of Out

(%) (%) (out of 3080) (%) (%) (out of 3080)

H. pylori IgG 94.46 87.73 806 H. pylori IgG 94.79 83.11 806

Pepsinogen II 91.14 86.60 2789 Pepsinogen II 91.22 84.19 2789

Lipopotein 82.11 86.51 106 Gamma SM 84.21 80.95 19

RF 80.63 86.37 284 Lipoprotein 83.51 81.11 106

Gamma SM 78.95 87.00 19 RF 81.69 81.40 284

In addition to failure cases, we present the most successfully estimated test items
in Table VI. As clearly seen comparing Tables VI and III, the detection rates of out-
side states of these items are significantly higher than the overall detection accuracy
of outside states concerning the entire CIMI database. Besides, the detection rates of
inside states in Table VI show that this high performance is not due to any bias in es-
timation. Additionally, the results are meaningful since the number of observations of
outside states are significant with the exception of Gamma SM, which has only 19 out-
side state observations. Therefore, we can say that the proposed method can be used
in estimating the states of the listed test items in Table VI in a reliable way. Further-
more, (Low) and (Low+Medium) do not have significant difference in performance also
for the best estimated tests given in Table VI.

7.2. Estimation performance of the conventional methods
We compare the performance of the proposed method with several standard machine
learning algorithms, namely linear discriminant classification (LDC), Quadratic dis-
criminant classifier, K-nearest neighbor (KNN) classification and naive Bayes classi-
fication. The selection of classifiers are carried out in such a manner that several
different classification approaches are tested. For instance, LDC uses a linear surface,
whereas QDC uses a quadratic surface. Namely, LDC and QDC differ mainly in their
assumption on class covariances. On the other hand, KNN is a non-parametric and
non-linear classifier. Moreover, the naive Bayes classifier is a non-linear probabilistic
classifier. In this manner, we employ linear or quadratic parametric classifiers as well
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as non-parametric or probabilistic classifiers. The reader is referred to [Heijden et al.
2004] regarding the details of these classification algorithms.

Table VII. Performance of the conventional methods.

Accumulated states(%) States(%)

Classifier Source set 0 1 2 3 Tot Out In Tot

LDC
Low 96.65 9.79 8.96 44.36 82.54 34.93 95.95 88.47

Low+Medium 96.38 10.92 10.26 47.20 82.58 37.19 95.68 88.52

Naive Bayes
Low 90.28 14.76 14.24 41.25 77.70 37.09 89.63 83.20

Low+Medium 90.32 15.72 14.74 44.42 78.05 39.29 89.65 83.48

KNN
Low 93.68 13.36 7.28 32.02 79.42 26.95 93.34 85.21

Low+Medium 93.73 13.13 7.60 32.65 79.49 27.44 93.37 85.29

QDC
Low 71.60 16.41 13.04 34.39 62.18 31.47 72.65 67.61

Low+Medium 69.84 16.11 12.50 34.27 60.70 30.83 71.11 66.17

First of all, by comparing each pair of rows in Table VII, it is observed that the
performance rates regarding (Low) and (Low+Medium) do not have a significant dif-
ference.

It is observed that the accumulated state of “0” is estimated with high accuracy.
However, “1” , “2” and “3” are estimated with much lower accuracy. Accumulated state
of “3” is estimated with better accuracy than “1” and “2”, but its estimation rate is
still very low compared to the proposed approach. Therefore, we can say that these
methods have a bias in estimation and tend to classify most observations as “0”. In
addition, we do not present the confusion tables for brevity’s sake, but as we examine
them we observed that non-zero accumulated states are mostly confused with “0”.

By examining the right hand side of Table VII, it is observed that outside states are
estimated with very low accuracy. Namely the alternative methods have an estimation
varying between 27.44% and 39.29% for outside states. These numbers are significantly
lower than the estimation rate of the proposed method for outside states (60.87% and
62.61%). Due to the bias of these methods to classify the observations as inside, the
identification rate of inside states are quite high, namely between 95.95% and 71.11%.
As a results of this bias and the majority of inside states in CIMI database, the overall
recognition rate increases misleadingly.

Although the general detection rates of outside states concerning the entire CIMI
database are low for these alternative methods, it is still possible that they are able
to capture the distinguishing characteristics of outside and inside states for a very
small number of test items. In other words, they might have very high performance for
only a few tests and very low performance for most of the other tests. In that case, it
would still be possible to employ these alternative methods for estimating this small
subset. Thus we investigate whether the low rates in Table VII are due to a general
incapability or an in-homogeneity in estimation performance between test items.

Therefore, we do the same thing, which we did in Table VI for our method, and depict
the tests items which are estimated with highest accuracy. For the sake of brevity, we
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do it for only one of the four alternative methods. We pick LDC, since it has the highest
overall estimation performance as seen in Table VII. The five test items with highest
outside state estimation accuracy regarding LDC are given in Table VIII.

Table VIII. Test items with highest outside state estimation accuracy for the LDC method.

Low Low+Medium

Test name Out In # of Out Test name Out In # of Out

(%) (%) (out of 3080) (%) (%) (out of 3080)

Pepsinogen II 97.24 21.99 2789 Pepsinogen II 96.20 50.52 2789

Apolipoprotein A1 70.04 77.59 1442 Apolipoprotein A1 70.60 70.82 1442

HDL 61.26 88.91 888 HDL 62.73 86.46 888

HbA1c 49.15 97.90 177 H. pylori IgG 62.53 92.92 806

Albumin fraction 48.51 97.20 505 HbA1c 50.85 97.76 177

Clearly, the outside states concerning Pepsinogen II are estimated with a very high
accuracy for both (Low) and (Low+Medium). However, note the estimation accuracy of
inside state for these cases, which is very low. This indicates that LDC has a tendency
to classify most observations of Pepsinogen II as outside. This is due to the high obser-
vation frequency of outside states in Pepsinogen II test (2789 out of 3080). Apolipopro-
tein A1 suffers from the same drawback. Although the estimation rates are more or
less fair for (Low+Medium), they are still not as good as the rates of the proposed
method (See Table VI). Besides, considering the 201 USD additional cost of carrying
out (Low+Medium) scheme instead of (Low), the performance rates of these alternative
methods are clearly not satisfactory.

Table IX. Test items which are estimated with highest outside state accuracy with proposed method are
estimated with lower accuracies by LDC.

Low Low+Medium

Test name Out In # of Out Test name Out In # of Out

(%) (%) (out of 3080) (%) (%) (out of 3080)

H. pylori IgG 22.08 92.57 806 H. pylori IgG 62.53 92.92 806

Pepsinogen II 97.24 21.99 2789 Pepsinogen II 96.20 50.52 2789

Lipopotein 9.82 96.89 106 Gamma SM 0 98.92 19

RF 1.41 97.00 284 Lipoprotein 23.16 96.60 106

Gamma SM 0 98.76 19 RF 1.41 97.57 284
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Moreover, in Table IX exactly the same set of test items appearing in Table VI are
handled. In this manner, we demonstrate the performance of LDC for those tests items,
which are estimated with best accuracies with the proposed method. It is conclude that
these particular tests are estimated with very poor accuracies by LDC. In addition, the
bias of LDC in favouring the frequently appearing states is confirmed once again. For
instance, H. Pylori IgG has a higher number of inside states than outside states (806
out of 3080). The effect of this difference is clearly observed in estimation accuracies
(22.08% vs 92.57%). Similarly, the dominance of outside states for Pepsinogen II (2789
out of 3080) is reflected in the estimation accuracy as a strong bias towards outside
states(22.08% vs 92.57%).

8. DISCUSSION
This study proposes an inference mechanism to be used in diagnostic process tasks of
clinical decision support systems, which distinguishes from the classical design frame-
work with its high accuracy, emphasis on cost efficiency as well as generalization capa-
bility and flexibility to be extended on different platforms. In what follows, we discuss
in detail on each of these advantages.

The proposed inference framework proves to achieve a very high specificity. Overall
sensitivity is not as high as specificity. Nevertheless, it is shown that it is still much
better than those of standard machine learning algorithms. In addition, it is not rea-
sonable to expect estimation of all the tests using the same set of standard test items.
Therefore, we examine the test items which are estimated with highest and lowest
accuracy and demonstrate that the proposed method can be used confidently in esti-
mating the states of a set of high-cost test items (See Table VI).

In addition to achieving high accuracy in certain tests, our method emphasizes cost
efficiency in diagnostics procedure. Namely, with the proposed system, the routine test
items, which have a relatively low cost, can be used to determine the condition of a
patient with respect to another test item with a high cost. Furthermore, by employing
two sorts of source sets, namely (Low) and (Low+Medium), we ascertain that the addi-
tional test items with medium cost do not contribute to the improvement of estimation
accuracy to a significant degree. This suggests that a source set composed of low cost
test items provides a high enough accuracy with a reasonable cost.

Moreover, provided that the proposed inference mechanism is integrated into a CDS,
the direct link established between the estimation mechanism and the physicians of-
fers a profound integration of financial standpoint into the medical diagnosis scheme.
Since physicians make the most important decisions such as hospital admittance, or-
dering tests and procedures, and prescription of medications, this link has the poten-
tial to control a significant portion of medical care costs [Cohen et al. 1982; Enthoven
1980].

Furthermore, the method has high generalization capabilities. Generalization refers
to application of the proposed scheme on different platforms and in different institu-
tions. Since the source test constitutes of common health check-up tests, the implemen-
tation of the proposed inference framework is quite straightforward. Namely, it does
not require any changes in the practical treatment procedure. Therefore, it is possible
to apply it in different environments without changing the medical conventions.

Besides, the estimation mechanism is flexible to apply into different medical cases.
Here, medical case refers to the treatment of a particular patient, whereas flexibility
refers to the adaptation of the method to different scenarios with varying potential
diseases. Once the decision framework is established, it can be applied to any medical
case or for any disease in the database. In this manner, the physician has the possi-
bility to investigate indications of not only a disease of first concern but several other
diseases in the database without additional effort or cost. For instance, the proposed
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clinical decision support system employs a set of generic test items to estimate oncol-
ogy tests. This means that even thought the physician considers cancer to be a slight
possibility, he/she still has a possibility to investigate the likeliness. Therefore, the
commonly performed tests might easily be used to estimate the condition of the pa-
tient in respect of any unanticipated disease without consuming additional resources.
This process might seem redundant in most cases but keeping in mind that the early
detection and treatment is of utmost importance in oncology along with many other
medical fields, the effort for estimating the result of these tests is minimal considering
the possible benefits.

Furthermore, the proposed method has the potential to leverage public health infor-
matics promoting the health of populations [Yasnoff et al. 2000]. Namely, the subset of
low-cost medical tests are applied for most patients taking a medical check-up, which
enables monitoring the condition of a community as well as single individuals with
respect to a costly test.

9. CONCLUSIONS
This study proposes an effective analysis for the “information rich” yet “knowledge
poor” health care data in a cost effective manner. We utilize a set of standard test
items in common health check-ups to estimate the future states of a set of costly med-
ical tests. The relation between test states is modeled through a multivariate kernel
density estimate in a Bayesian framework. Our results demonstrate that the proposed
method achieves significant performance in an extensive database. Moreover, we dis-
cover that a subset of high-cost tests are estimated with outstanding accuracy and
thus the proposed algorithm can be used for estimating those tests in a reliable man-
ner. In addition to high estimation accuracy and cost effectiveness, our algorithm bears
a number of potential benefits. First of all, with the proposed system the physician
might investigate the condition of a patient with respect to a slightly anticipated test
without any additional effort or cost. This might enhance early detection of several
diseases and improve health care quality. Besides, a source set composed of commonly
performed tests enables monitoring the condition of not only individual patients but
also a community. Moreover, the system is relatively easy to integrate into the current
health care platforms, due to the common application of the source tests.
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