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Abstract
Imitation is a powerful capability of infants, relevant for boot-
strapping many cognitive capabilities like communication, lan-
guage and learning under supervision. In infants, this skill
relies on establishing a joint attentional link with the teach-
ing party. In this work we propose a method for establish-
ing the joint attention between an experimenter and an embod-
ied agent. The agent first estimates the head pose of the ex-
perimenter, based on tracking with a cylindrical head model.
Then two separate neural network regressors are used to in-
terpolate the gaze direction and the target object depth from
the computed head pose estimates. A bottom-up feature-based
saliency model is used to select and attend to objects in a re-
stricted visual field indicated by the gaze direction. We demon-
strate our system on a number of recordings where the exper-
imenter selects and attends to an object among several alter-
natives. Our results suggest that rapid gaze estimation can be
achieved for establishing joint attention in interaction-driven
robot training, which is a very promising testbed for hypothe-
ses of cognitive development and genesis of visual communi-
cation.
Keywords: Head pose estimation; gaze following; selective
attention; saliency; communication; joint attention; neural net-
works; robotics; autonomous mental development; imitation-
based learning.

Introduction and Motivation
Embodied agents are vital tools for testing developmental hy-
potheses in controlled simulation environments. In the last
few years, there is a marked effort to create robots that learn
like babies do. These systems allow the experimenter to test
ranges of experimental conditions under similar assumptions
and obtain quantitative results about the preconditions and de-
velopmental stages of various skills. They are particularly
relevant for studying how joint attention develops, as real in-
fants must be properly motivated and coerced into following
the experimenter’s attention, which imposes certain limita-
tions on the experimental setup (Flom, Deák, Phill, & Pick,
2004). In this paper we propose an algorithm that allows
an embodied agent to establish a joint-attentional link with
the experimenter. This skill is also important for developing
language and communication, as well as for imitation-based
learning, which allows the experimenter to demonstrate a be-
haviour rather than explicitly design algorithms to produce
the behaviour in the agent.

Recent models of imitation-based learning rely on Melt-
zoff and Moore’s active intermodal mapping (AIM) frame-

work for action imitation learning (1997). Important work
in this area includes (Shon, Storz, Meltzoff, & Rao, 2007)
and (Hoffman, Grimes, Shon, & Rao, 2006), which use
Bayesian principles to explore action spaces statistically, fol-
lowed by gradual learning of action groups and communica-
tive preferences. In (Hongeng, Nevatia, & Bremond, 2004)
a goal-based action model is used to classify intentional ac-
tions in a controlled environment. The embodied agent ex-
tracts a large number of visual features from the scene and
by tracking the trajectory of the experimenter’s hand, deter-
mines which of the predefined actions is being performed. As
a common factor of most research in this area, visual cues are
extensively used for implementing working models on em-
bodied agents, and the visual distinctions that can be per-
ceived by the embodied agent serve as affordances (Moratz
& Tenbrink, 2008).

In experiments concerning human robot interaction, the
learned structure of a visual scene provides additional cues
to the embodied agent in guessing the focus of attention of
the communicating party. Subsequently, most approaches in-
corporate saliency as a part of the joint-attention system, and
select appropriate saliency measures that will indicate what is
inherently interesting in the scene depending on the applica-
tion domain. The saliency can be a function of natural image
statistics. For instance in (Nagai, Hosoda, Morita, & Asada,
2003), a robotic system is described where the bottom-up
saliency of a visual scene is computed by color, edge and
motion cues. Top-down influences can also be incorporated
by modulating bottom-up channels, or by explicitly adding
dedicated saliency components. Faces are important for the
natural interaction settings, consequently they are separately
detected and made salient. In what follows, the party that
interacts with the embodied agent is referred to as the experi-
menter.

When the saliency of a scene is determined, a visual feed-
back controller provides motor control commands to direct
the gaze of the robot to a salient location, both for attending
to the face of the experimenter and to other objects in the en-
vironment. Estimating the head pose of the other party is a
visual skill necessary for joint attention modeling. In (Nagai
et al., 2003) a separate module learns to associate facial ap-
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Figure 1: Basic steps of the algorithm.

pearance of the experimenter with angles that specify its pose.
For each facial appearance in the training set, the head orien-
tation is manually annotated.

The distinction of following the head pose and the gaze di-
rection itself is an important one that we explicitly stress in
this paper. It appears that young infants first follow the head
movements of others, and only in time develop the ability to
follow the gaze direction (Corkum & Moore, 1995). Most of
the joint attention approaches in the literature do not explic-
itly correct for the discrepancy between the head pose and
gaze direction, which is reported to be normally distributed
with a mean of five degrees in natural settings (Hayhoe, Land,
& Shrivastava, 1999 ; Triesch, Jasso, & Deák, 2007). Esti-
mating the gaze direction has received a lot of attention for
obvious reasons, see (Hansen & Ji, to appear) for a recent
overview of eye and gaze models.

In the next section, we describe a fast model for joint at-
tention modeling, which is based on estimating the head pose
of the experimenter. The individual components of the sys-
tem are described with dedicated sections, followed by our
experimental results.

Overall Description of the Model
The basic steps of the proposed algorithm are summarized
in Figure 1. The first step of the proposed metod is detect-
ing the face of the experimenter with the Viola-Jones algo-
rithm (Viola & Jones, 2001). The details of this step are omit-
ted, as the method is fairly mainstream, and a widely used im-
plementation exists in the OpenCV library. The head pose of
the experimenter is tracked by adapting a 3D elliptic cylindri-
cal model to the face region. The pose vector consists of the
roll, pitch, and yaw angle parameters of the cylinder. Once

the pose angles are determined, a neural network regressor es-
timates the gaze direction. This step is necessary, since small
head pose changes towards peripheries of the visual field are
usually indicative of larger deviations of the gaze direction.
We assume that the embodied agent is not sufficiently stable
to extract an accurate estimate of the gaze direction directly
by analysing the eye and iris area of the experimenter.

A second neural network regressor is used to estimate the
distance of the target object along the gaze direction. These
two estimates are probabilistically combined to yield a coarse
estimate for the center of the target object. By pooling a es-
timates from a number of consecutive frames, a more robust
decision on the target is generated.

The rough localization of the attended object is refined by a
bottom-up saliency scheme, which also segments out the tar-
get object. If the experimenter continues to maintain a certain
head pose, alternative target locations are eventually explored
as a result of an inhibition-of-return mechanism. We now de-
scribe each of these steps in more detail.

Head Pose Tracking
The real-time head tracking and 3D pose estimation algo-
rithm is initialized using the popular Viola-Jones face detec-
tion method, which employs an Adaboost classifier with Haar
wavelet features (Viola & Jones, 2001). The 3D pose estima-
tion is implemented via continuous tracking with the Lucas-
Kanade optical flow method (Lucas & Kanade, 1981).

The pose of the head relating frame Ft at time t is repre-
sented with a pose vector pt, which is initialized by assuming
that F0 contains a fully frontal face, where the eye-contact is
established between the agent and the experimenter. Thus the
rotation parameters are all set to 0 and the translation param-
eters are initialized considering the detected face location of
the experimenter.

For simplicity and fast computation, the 3D motion is sum-
marized by a set of points that are obtained by regular sam-
pling on the cylinder surface (See Figure 2 (a)). The relation
between these points and their corresponding projections on
the 2D image plane is established by a perspective projection
based on a simple pin hole camera model. Let pi be a point
sampled from the surface of the cylinder at Fi and ui be its
projection on the image plane. If the cylinder is observed at
different locations and with different orientations at two con-
secutive frames Fi and Fi+1, this is expressed as an update in
pose vector pi by the rigid motion vector ∆µi,

pi+1 = ∆µipi.

In order to compute this motion vector, we need to establish
the relation between pi and ui for Fi and their corresponding
locations on Fi+1. The new location of the point at Fi+1 is
found by projecting ui onto the cylindrical model, applying
the pose update and mapping back to the image coordinates.
If the intensity of the pixel I(u) is assumed to be constant
between the images, the pose update satisfies:

∆µi =−( ∑
u∈Ω

(IuFµ)t(IuFµ))−1 ∑
u∈Ω

(It(IuFµ)t)
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(a)

(b)

Figure 2: (a) The experimental setup. Object indices and cen-
ters are manually annotated by the user. The annotated gaze
direction points towards the object centre, the estimated gaze
directions are shown with a tolerance band around it. (b) Dis-
tribution of pose angles.

where Iu and It are the spatial and temporal image gradients,
respectively (Lucas & Kanade, 1981). Solving for ∆µ for each
frame Fi, we obtain a continuously updated pose vector for
all frames in the sequence. For further details, the reader is
referred to (Valenti, Yücel, & Gevers, 2009).

Gaze Direction and Target Depth Estimation
Head pose estimation is primarily used to determine the fo-
cus of attention of a person. Wu and Toyama previously de-
veloped a method that is based on fitting an ellipsoidal head
model to the 2D video image to estimate the pose angle, not
unlike our approach detailed in the previous section (Wu &
Toyama, 2000). This method was also employed to follow the
gaze of the instructor in a shared-attention scenario (Hoffman
et al., 2006).

The head pose is certainly indicative of the gaze direction.
However, it does not completely specify the gaze direction,
since gaze involves eye movements, in addition to the head
pose. Our experimental setup involves an experimenter look-
ing at several objects placed on a flat surface, shown in Fig-
ure 2 (a). Figure 2 (b) illustrates the distribution of head

pose angles obtained as the experimenter looks at each ob-
ject for a few seconds. The head pose angles are grouped
(and coloured) according to the target object, which reveals a
clear clustering, as well as the nonlinear nature of the relation
between head pose and gaze direction.

Some approaches resolve gaze direction from head pose
implicitly by incorporating additional assumptions. For in-
stance in (Stiefelhagen, Yang, & Waibel, 1999), the focus of
attention is assumed to rest on a person, and the estimated
head pose is corrected to select the closest person as the target
of the gaze. In this paper we assume that precise eye-center
positioning and 3D interpolation of the gaze vector in real
time is not realistic for the embodied agent. We use a two-
layer backpropagation neural network to interpolate the gaze
direction from a given 3D head pose vector estimate (Bishop,
1995).

The input layer of the feedforward artificial neural network
receives the three-dimensional estimated pose vector and
maps this input to a gaze direction, represented by a single
angle on the image plane. We have used 10 hidden units, an
initial learning rate of 0.1, which is exponentially decreased
during training, and an online training scheme. Weights in
both layers are initialized randomly from the (−0.5,0.5) in-
terval. A validation set is monitored for error decrease to pre-
vent overfitting. The training samples required for the super-
vised training of the neural network are obtained by manual
annotation of the target object location for each frame of the
video.

Our experiments indicate that the angle with which the
head is turned towards the focused object underestimates the
actual gaze direction, both horizontally and vertically. Fig-
ure 3 illustrates the estimated gaze direction through head
pose computation and the gaze direction estimated through
the neural network regressor. The neural network interpola-
tion (or extrapolation, in most cases) achieves both 3D and 2D
coordinate mapping, and provides more accurate estimates of
the gaze direction. For the particular case presented in Fig-
ure 3, the improvement per frame is 0.14 radians as measured
on the image plane.

The actual depth is not specified by the gaze direction vec-
tor on the image plane, yet this information is present to
some extent in the 3D head pose vector estimated in the first
step. Therefore another neural network module is trained to
obtain an estimate for the depth of object of interest. The
parametrization is similar to the first regressor, with three in-
put values and a single depth value measured from the head
centre as the output value.

Target Object Location Estimation
Once the gaze direction is estimated, we determine a feasible
region for directing the focus of attention. The estimate for
the gaze direction is allowed a tolerance interval, shown in
Figure 2 (a) with a yellow gaze cone, and the target for the
joint attention is assumed to fall within this gaze cone. We
have experimentally set the maximum deviation from the es-
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Figure 3: Improvement of gaze direction estimation over head
pose estimation introduced by neural network regression.

timated gaze angle to 3π/64. The rough depth estimate helps
to further narrow down the search.

The intersection of the gaze vector and the line of depth
gives a single point in the image plane, indicative of the best
estimate for the target location. Examples of the resulting
estimates for focus of attention on the 2D image plane are
presented in Figure 4.

Figure 4: Estimates for focus attention. This figure is best
viewed in colour.

Saliency Model
Once the gaze direction is estimated, the agent attempts to
determine the focus of attention of the experimenter. For this
purpose, we employ the popular bottom-up saliency scheme
proposed in (Itti, Koch, & Niebur, 1998). This approach
is based on the feature integration theory of Treisman and
Gelade, and decomposes the saliency of a scene into sepa-
rate feature channels. The presence of illumination intensity,
colors, oriented features and motion are indicative of salient
locations in the scene. Each feature channel is separately used
to determine a feature-specific saliency map, which are then
combined to a saliency master map. In the original model, the
saccadic eye movements are simulated by directing a foveal
window to the most salient location, determined by a dynamic
and competitive Winner-Take-All (WTA) network (Itti et al.,
1998). Once a location is selected, it is suppressed by an
inhibition-of-return mechanism to allow the next most-salient
location to receive attention.

We use this model for determining the most salient object
in the immediate neighbourhood of the estimated target loca-

tion. The tracking and interpretation of the head pose itself
is noisy, and by itself not sufficient to single out the target.
If there is more information available as to the experimenters
intentions, or an instruction history that can provide back-
ground probabilities with regards to which objects are more
likely to receive attention, these can be integrated into the
saliency computation in a top-down manner, by for instance
modulating the responses of individual feature channels ap-
propriately. In Hoffman et al., the probability that an ex-
perimenter selects a particular object is learned by fitting a
Gaussian mixture model on the pixel distribution. We do not
model the top-down influence at this stage, simply because in
the absence of specific contextual models, this additional in-
formation presented to the system would optimistically bias
the results.

Using saliency to fixate on the interesting objects serves
a twofold purpose. Firstly, it reduces the uncertainty in the
estimation of the gaze direction. We may safely conjec-
ture that since saliency computation in the early layers of
the visual system precedes the estimation of gaze direction,
the saliency-based grafting of the gaze to interesting objects
should serve as a supervisory system for learning to estimate
the gaze direction. A consequence of this learning is the de-
veloping ability of the infant to estimate the attention focus
of the experimenter even when it lies beyond the visual field
of the child.

Secondly, saliency-based grafting compensates the dis-
crepancy between intended motor commands and executed
physical actions, an issue which is particularly relevant for
robotic implementations. The movement of the simulated
fovea effectively creates an object-centered coordinate sys-
tem, which is a precondition of parsimonious mental object
representations.

In our model, the bottom-up saliency model receives a
modified image from the gaze estimation module, where a
particular region around the estimated gaze retains image in-
formation and the rest of the visual field is suppressed. This
forces the WTA to attend only to salient parts within the gaze
cone.

Since human eye makes three to five saccades per second,
it is not realistic to compute saliency for a 25 f ps rate. There-
fore we form bins of consecutive frames by considering five
consecutive frames to belong to the same bin and calculate the
2D location of focus of attention for each of them. Since we
do not expect the focus of attention change drastically in this
short time interval, we perform a smoothing operation on the
estimated point by using a low pass filter. Five Gaussian dis-
tributions are then positioned around the resultant estimates
and an eventual feasible region is obtained. Saliency com-
putation followed by object segmentation is performed in the
eventual feasible region and thereby the object of interest is
resolved. It is observed that in most of the cases the coarse
object location estimates fall on the object.
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Experimental Results
We have collected ten video sequences at 25 f ps for a total
of 4211 frames, where the ground truth for experimenter’s
attention is manually annotated. The results are reported by
ten-fold validation, where one session is used for training,
and the remaining nine are used to evaluate the accuracy of
the system for each fold. The mean values are reported for ten
such batches. For each sequence, the experimenter focuses on
each of the seven objects for several seconds in random order.
Since accuracies depend on the placement of the objects, we
partition the objects into groups that indicate distance from
the experimenter (i.e. near and far), as well as into groups
that indicate angular distance from the frontal gaze direction
(i.e. central and peripheral).

We assume that if the computed focus of attention is suffi-
ciently close to the target object, the detection is successful.
The threshold for accepting success, however, can be deter-
mined arbitrarily. In order to determine a reasonable value
for the tolerance interval around the estimated gaze direc-
tion, we inspect the cumulative match characteristics curve
(CMC), given in Figure 5. The CMC curve plots the accu-
racy of the system for a whole range of thresholds, where a
particular value τ of the threshold means that angular devia-
tions from the target less than τ are acceptable at this stage.
The final threshold to be used in the actual deployment also
depends on the attention module; a larger threshold means
that a larger area needs to be searched by the attention mod-
ule, and increases the probability of off-object fixations. We
determine from the curve that a tolerance interval of 3π/64
leads to a reasonable detection rate.
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Figure 5: Cumulative match characteristics of the head-pose
estimation module on test recordings.

The first row in Table 1 shows the average deviation from
target in radians for the whole system, denoted by Q1. It
can be seen that the gaze direction is correctly estimated in
the majority of cases, and there are no significant differences
between object groups. Furthermore, it is observed that the
difference presents an acceptable deviation, close to the tol-
erance value derived from the CMC curve.

In order to provide comparative results indicating the con-

Table 1: Performance evaluation, see text for details.
Quality Measure near f ar central peripheral

Q1 0.04 0.06 0.06 0.04
Q2(h) 0.33 0.00 0.00 0.25
Q2(hg) 0.33 0.16 0.55 0.25
Q2(hgd) 0.87 0.72 0.80 0.76

tribution of each part of our proposed method, we present
results in three different experimental settings. In the first set-
ting (only head), the head pose is assumed to be exactly the
same as gaze direction, and the tolerance band is positioned
directly around the pose vector. In the second setting (head +
gaze), the neural network regressor for the gaze estimation is
taken into account. Finally, for the third setting (head + gaze
+ depth), the neural network regressor for the depth estima-
tion is used to determine the focus of attention. The last three
rows of Table 1 show the ratio of times the estimated gaze in-
tersects the bounding box of the target object to all estimates
for each of these settings, denoted by Q2. This value is ideally
close to unity. Since the segmentation step can recover from
gaze estimation errors, it is important to distinguish between
cases of complete miss and cases where the gaze cone touches
the object, and with high probability the saccadic search will
visit the correct object in time.

(a) (b)

(c) (d)

Figure 6: Example frames where the object of interest is de-
tected.

Figure 6 illustrates several examples for which the pro-
posed approach detects the target object. The visible image
indicates the tolerance band around estimated gaze direction.

Figure 7 illustrates several example frames where the target
was not detected. There are various reasons for misdetection.
It may be the case that the pose vector is not estimated with
high accuracy, so that the cone does not include the object of
interest. The other possibility is that the pose vector is esti-
mated correctly, but the objects falls into an image segment
with more salient objects, which draw the focus of attention.
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(a) (b)

Figure 7: Example frames where the object of interest is not
detected.

Conclusions
We have proposed a method for establishing joint attention
between a human and an embodied agent. Our model uses
estimation of head pose, correction for gaze direction, and
attention based selection for finding objects attended by an
experimenter. We point out to a shortcoming in the literature,
in which the head pose is taken for specifying the focus of
attention. We seek to remedy this by employing a neural net-
work regressor that interpolates the gaze direction from the
head pose.

The proposed method is meant to provide a first approxi-
mation to an otherwise complex cognitive phenomenon. Pos-
sible future directions include direct gaze estimation by using
a higher-resolution camera to inspect the eyes of the experi-
menter, as additional physical cues to determine the focus of
attention. Yet one should not forget the contribution of con-
text in the interaction. As Kaplan and Hafner (2006) rightly
point out, the existence of top-down influences and the con-
siderations imposed by higher-level cognitive functions make
joint attention a very difficult egg to crack.
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