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aDepartment of Electrical and Electronics Engineering, Bilkent University, Ankara, Turkey
bDepartment of Computer Engineering, Bilkent University, Ankara, Turkey

cDepartment of Pharmacology, Faculty of Medicine, Hacettepe University, 06100, Ankara, Turkey

Abstract

We developed an inexpensive computer vision-based method utilizing an algorithm which differentiates
drug-induced behavioral alterations. The mice were observed in an open-field arena and their activity was
recorded for 100 min. For each animal the first 50 min of observation were regarded as the drug-free period.
Each animal was exposed to only one drug and they were injected (i.p.) with either amphetamine or cocaine
as the stimulant drugs or morphine or diazepam as the inhibitory agents. The software divided the arena
into virtual grids and calculated the number of visits (sojourn counts) to the grids and instantaneous speeds
within these grids by analyzing video data. These spatial distributions of sojourn counts and instantaneous
speeds were used to construct feature vectors which were fed to the classifier algorithms for the final step
of matching the animals and the drugs. The software decided which of the animals were drug-treated at
a rate of 96%. The algorithm achieved 92% accuracy in sorting the data according to the increased or
decreased activity and then determined which drug was delivered. The method differentiated the type of
psychostimulant or inhibitory drugs with a success ratio of 70% and 80%, respectively. This method provides
a new way to automatically evaluate and classify drug-induced behaviors in mice.

Keywords: Computerized video analysis, Drug discrimination, Locomotor activity, Open field,
Automatization

1. Introduction

Behavioral studies in biological research are mostly based on the observation and evaluation of motor
activity of animals in experimental models. Recording locomotion in the open field or an arena is widely
used to investigate the behavioral alterations of the animals in response to therapeutic interventions, genetic
mutations and for evaluation of behavioral responses to psychoactive drugs. A variety of methods are
available to measure motor activity. Conventional and widely used photobeam apparatus monitors horizontal
and vertical locomotor activity, area entries, and the occurrence of different activities, such as rearing. The
system generates a signal when an animal interrupts the infrared light and suitable arrangement of sensors
register movements in the desired direction. The standard photobeam apparatus has been used for recording
motor activity for preclinical drug evaluation (Beninger, Cooper, and Mazurski, 1985; Clarke, Smith, and
Justesen, 1985; Teicher, Andersen, Wallace, Klein, and Hostetter, 1996; Robles, 1990). Some drawbacks of
this system were eliminated by continuous-wave Doppler radar (CWDR) as an alternative to the standard
photobeam box (Pasquali and Renzi, 2005). Multilayer feed-forward neural networks, which are fed with the
power spectrum estimation and Root Mean Square (RMS) values of these signals, helped them to classify the
behavior as exploring, grooming and sedation. Drai et al., using data measured by a standard photobeam
tracking system introduced an algorithm that segments rodent locomotor behavior and demonstrated the
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effects of amphetamine and phencyclidine in rats (Drai, Benjamini, and Golani, 2000). Other than force
sensors, infrared photobeam recording and CWDR, video capturing has been used in tracking rodent motion
in behavioral studies (Noldus, Spink, and Tegelenbosch, 2001; Vorhees, Acuff-Smith, Minck, and Butcher,
1992).

Computer systems utilizing suitable software are employed to analyze digital video recordings of the
activity of experimental animals to evaluate their behavior. Automated observation with video capturing
presents significant advantages over previous methods. In these methods, animal behavior is recorded more
reliably because the computer algorithm is not subjective, and it is not prone to operator bias. In contrast
to visual observation, video tracking may also perform pattern analysis on a video image of the observed
animal and derive quantitative measurements of the behavior (Noldus et al., 2001). Automated observation
using video tracking is particularly suitable for recording locomotor activity. Activity is expressed as spatial
measurements of distance traveled, speed, and acceleration (Burešová, Bolhuis, and Bureš, 1986; Dielenberg,
Halasz, and Day, 2006; Spruijt and Gispen, 1983; Spruijt, Buma, van Lochem, and Rousseau, 1998). In
a recent study Shih and Young reported a combination of an accelerometer and video camera system to
simultaneously measure vibration and locomotion activity and compared the effects of amphetamine and
pentobarbital (Shih and Young, 2007).

Discrimination of variations in the locomotor activity is important in behavioral studies. A system
which is capable of detecting behavioral alterations in response to pharmacological manipulations could
prove very useful in behavioral and neuropharmacological studies, as well as in drug screening and toxicology
studies. Thus, the present study was conducted to develop an automated system for recording and analyzing
the locomotor activity of mice in response to pharmacological manipulation. We present here a video
tracking method which utilizes an algorithm to detect and discriminate drug responses elicited by diverse
pharmacological groups. In order to evaluate the method employed we tested typical pharmacological
agents with well-described behavioral effects. We used amphetamine and cocaine as the stimulant drugs
and diazepam and morphine as the inhibitory agents. Our main contribution lies in the construction of the
feature vectors which represent the behavior of the subject in such a way that the behavioral distinctions
are preserved and displayed clearly.

2. Materials, methods, and results

2.1. Animals

Male albino mice weighing 30-35 g were used in these experiments. Mice were housed in groups of three
per cages in a temperature-controlled room (23 ± 1◦ C) with a relatively humidity of 40 − 70% and kept
in a 12h : 12h light/dark cycle (illuminated between 1800 and 0600 h). Access to food and water was
unrestricted. The methods and procedures of the present study were approved by the ethics committee of
Hacettepe University (2008/71-4).

2.2. Drugs

D-Amphetamine hydrochloride and diazepam were obtained from Sigma Chemical Co. (USA), whilst
cocaine hydrochloride and morphine hydrochloride were obtained from Etablissements Roques, France and
Verenigde Pharmazeutische Fabriken, Holland, respectively. All drugs were dissolved in saline.

2.3. Open field measurements

Mice were taken one at a time from their standard home cages, weighed and marked. Then animals
were transferred to the open field apparatus and their video images were recorded as they explored. The
open field consisted of a square base, 45 cm× 45 cm with glass walls 45 cm high. The floor of the arena was
painted matt black, and the arena was illuminated by means of an incandescent lamp of 40 W, positioned
above the base providing a homogeneous illumination in the arena. The arena was located in a dark room
and it is kept away from odor or sound. An adjustable surveillance camera (Fly WC-OML300, China) was
positioned 60 cm above the base of the arena and was connected to a personal computer. The behaviors of
the mice were recorded at a frame rate of 10 Hz.
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In this study, 29 animals were divided into five groups. For each animal, video images were recorded in
two following sessions. In the first session, baseline activity of the mice was recorded for 50 min without
drug administration.Immediately after this session, animals received an injection of cocaine, amphetamine,
diazepam, or morphine and were placed back into the arena for another 50 min. Each animal was used
only once for each drug. All injections were given intraperitoneally (i.p.) in a volume of 10 ml/kg. All the
drugs were dissolved in saline and were administered at doses of 10 mg/kg for cocaine (n = 6), 10 mg/kg
amphetamine (n = 6) 10 mg/kg morphine (n = 6) and 10 mg/kg diazepam (n = 6). The initial 10 min of
each session were discarded. During this period animals resumed their baseline locomotor activity following
manipulation.

2.4. Statistical analysis

Within group comparisons among baseline and post-treatment activities were made using two-way
ANOVA. P value of less than 0.05 was considered statistically significant.

2.5. Data analysis

Data analysis method composed of mainly two stages: (i) behavior representation step, which includes
motion tracking and feature extraction, and (ii) classification step, where the videos are labeled according
to the animals behavioral differences.

2.5.1. Drug induced alteration in locomotion

Prior to the evaluation of psychotropic drug effects we studied the effects of saline injection. Six separate
mice injected with saline did not display altered locomotor activity and their cumulative traveled distance
curves overlapped before (baseline) and after the injections (Fig. 1-(A) inset). Then we compared the
effects of drugs with their untreated (baseline) activity. Examination of the video recordings and cumulative
traveled distances (Fig. 1) revealed that amphetamine (P < 0.006) and cocaine (P < 0.03) increased
locomotor activity compared to the pre-drug control period, while morphine (P < 0.01) and diazepam
(P < 0.04) inhibited locomotion. However, amphetamine- and cocaine-induced increased locomotor activity
exhibited different characteristics. Following administration of both amphetamine and cocaine the animals
displayed accelerated movement and the distance they traveled significantly increased with respect to the
controls (Fig. 1-(A)). Amphetamine administered animals preferentially moved along the edges of the arena,
while cocaine-treated animals moved throughout the arena including the central reagents, displaying a
motion of more distributed nature (Figs. 2 and 3). Morphine and diazepam inhibited locomotion (Fig. 1-
(B)), however this inhibition also displayed different characteristics (Figs. 2 and 3). Under the influence of
morphine, the animals mostly remained sedated in one restricted area, generally located near the corners
of the arena. Diazepam-treated animals also remained sedated but to a lesser extent and they appeared
slightly more active around the edges of the arena, with respect to the morphine group.

Based on these observations, we developed a hierarchical scheme to differentiate the administered drugs
by analyzing the video of the mouse under the influence of a given drug. The structure of the hierarchical
classification (HC) scheme is illustrated in Fig. 4-(A). In Step 1, it is investigated whether the animal is
exposed to drugs used in this study or it exhibits a drug-näıve behavior. If the mouse is detected to be drug-
näıve, no further investigation is performed. If the animals’ activity is different from drug-näıve condition,
then the animal is considered to be drug-treated. In Step 2, the data is classified as increased or decreased,
according to the activity of the mouse. Finally at Step 3 the activity was analyzed separately depending on
its type and the final decision was reached considering the previously acquired drug characteristics.

Behavioral analysis is composed of motion tracking and feature extraction steps. In the motion tracking
step, the location of the animal is determined at each video frame. Feature extraction step uses this
information in two stages to represent the area explored by the animal and the speed of the motion which
provides distinctive characteristics for behavioral analysis.
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Figure 1: Cumulative distances traveled by mice in the open-field arena before and after psychotropic drug treatment. (A)
amphetamine (P < 0.006) and (B) cocaine (P < 0.03) injections significantly increased the distance traveled, whilst (C)
diazepam (P < 0.04) and (D) morphine (P < 0.01) decreased the distances with respect to their 40 min of predrug locomotor
activity. Distance curves obtained from control group of mice did not display significant difference before and after saline
injection (inset). Mice were administered 10 mg/kg amphetamine, 10 mg/kg cocaine, 1 mg/kg diazepam and 10 mg/kg
morphine (n = 6 per group). Data were expressed as the mean cumulative distance travel±dSEM over the 40 min of test
period.
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Figure 2: Representative samples of the distribution of sojourn counts of mice prior and after psychotropic drug administration.
Each figure depicts the total number of visits to the grids on the arena of 30× 30 grids. Sojourn counts were calculated by the
summation of all the visits to each pixel located within the grid (14 × 14 pixels). Total number of visits to the grids before
(right column) and after (left column) (A) amphetamine (10 mg/kg), (B) cocaine (10 mg/kg), (C) diazepam (1 mg/kg), and
(D) morphine (10 mg/kg) treatment. Each graph displays the results of 40 min of video recording.
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Figure 3: Cumulative instantaneous speeds of mice in each grids they visited. Sample instantaneous speeds for (A)amphetamine-
, (B) cocaine-, (C) diazepam-, and (D) morphine treated test subjects. Amphetamine and cocaine both increased the speed
of animals. The spreading of activity after cocaine was more homogeneous than in amphetamine group. Diazepam treatment
slowed down the animals and they preferred to move at the edges of the arena while morphine treatment resulted in a more
rebust decrease in locomotor activity and mice mostly displayed activity at the corners.
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Figure 4: (A) Steps of Hierarchical Classification algorithm. (B) Locations and borders of three main regions used in the open
field experiments.

2.5.2. Motion tracking algorithm

In order to track the motion of the animal, a video of N frames is recorded, with each video frame Fn,
1 ≤ n ≤ N , consisting of M ×M pixels. The path followed by the animal is found by positioning the
location of the subject in each frame. For this purpose, first, a background model, which we refer as BG,
is constructed by recording an image of the empty arena before the animal is placed. The location in each
frame is then found by subtracting the background model BG, from each frame Fn and then marking the
pixels different from the background. This process first requires the construction of a difference image Dn
obtained by subtracting the background model BG from Fn for each frame. For p = (xp, yp) denoting a
pixel on the arena, a difference image Dn(p) is found as

Dn(p) = Fn(p)−BG(p), 1 ≤ n ≤ N, ∀p.

In order to remove the noise and discriminate the animal from the arena, a threshold τ is applied to the
pixel values in Dn, to obtain a black and white image In, as

In =

{
1 if Dn(p) > τ,

0 if Dn(p) < τ,

n = 1, . . . , N,∀p ∈ Dn.

In In, black represents the test arena, and white represents the subject. The center of gravity of the white
area in frame n, which we refer as Cn, is then considered as the location of the animal to be used in tracking
the path.

2.5.3. Formation of basic features

To represent the discriminative characteristics of the animal’s motion numerically, we calculated two
basic features for each pixel, sojourn count (SC) and mean instantaneous speed (MIS). For a particular pixel
at location p on the arena, vn(p) denotes the presence of a visit of the animal to that location at frame n,
such that

vn(p) =

{
1 if p = Cn,

0 otherwise.

That is, if the center of weight of the mouse at frame n, Cn, is on pixel p, then there is a visit to that pixel
at frame n. The sojourn count of a pixel p is then defined as the number of all visits to that pixel through
the entire video sequence, that is

SC(p) =
∑
n∈N

vn(p).

7



Similarly, for a particular pixel pi = (xpi , ypi), the mean instantaneous speed is the mean value of the
displacement values originating from pi at any frame n, and moving to pj = (xpj , ypj ) which is the pixel
that the center of weight is located on the next frame n+ 1. Thus MIS(pi) is calculated as

MIS(pi) =
1

SC(pi)

∑
nstCn=pi

dn(pi),

where the displacement value dn(pi) for point pi at a particular frame n is calculated as

dn(pi) =
∥∥∥(xpi

− xpj

)2
+
(
ypi
− ypj

)2∥∥∥ , pi = Cn, pj = Cn+1.

The arena consists of M ×M pixels, for M being 420. When SC and MIS are calculated for each pixel, a
sparse representation is obtained since it is not very likely that the animal will visit a specific pixel. In order
to reduce the noise and to obtain a denser representation, we divided the arena into W ×W grids, each grid
containing w × w pixels, and obtain the features from the groups of pixels in each grid (Fig. 4-(B)).

Let guv, 1 ≤ u, v ≤W , be a grid on the arena consisting of w × w pixels such that

guv = {p‖(u− 1)w ≤ xp < uw, (v − 1)w ≤ yp < vw} .

The sojourn count for a grid guv is then defined as the sum of the sojourn counts of the pixels in the grid as

SC(guv) =
∑
∀p∈guv

SC(p).

The MIS of a grid guv is defined as the average of the mean instantaneous speed of the pixels for that grid

MIS(guv) =
1

SC(guv)

∑
∀p∈guv

MIS(p).

2.5.4. Formation of complex features

We observed that under the influence of the psychotropic drugs employed in this study the animals dis-
played different locomotor activity distribution characteristics. In order to further analyze and differentiate
behavioral characteristics we focused on behavioral patterns on local regions of the arena such as corners,
edges and centers (Fig. 1-(B)). The corners are represented by C1, C2, C3, C4, each consisting q × q grids.
Edges are denoted by E1, E2, E3, E4 covering q× (W − 2q). The central region with (W − 2q)× (W − 2q)
grids denoted by M . Then we grouped and combined the basic features according to the stated structure.
The feature vector for C1 in terms of the basic features falling in this region is defined as follows:

SC(C1) = bSC(g11)SC(g12) . . . SC(g1q)SC(g21) . . . SC(gqq)c.

The aggregate information for the corners and edges are obtained by aligning and adding the corresponding
portion of the sojourn count and mean instantaneous speed matrices,

SCC = SC(C1) + SC(C2) + SC(C3) + SC(C4),

MISC = MIS(C1) +MIS(C2) +MIS(C3) +MIS(C4),

SCE = SC(E1) + SC(E2)T + SC(E3)T + SC(E4),

MISE = MIS(E1) +MIS(E2)T +MIS(E3)T +MIS(E4),

SCM = SC(M),

MISM = MIS(M),

where for each Ck, the matrices SC(Ck) and MIS(Ck) contain the sojourn count and mean instantaneous
speed values of the pixels, respectively. SC(Ek) and MIS(Ek) are defined for 1 ≤ k ≤ 4.
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2.5.5. Feature vectors for drug-treated and -untreated classification of HC

We regarded as a collection of SC and MIS information of C, E, and M when the video was labeled as
drug-treated or untreated. The activity in regions C, E, and M using the mean and standard deviation of
sojourn counts and mean instantaneous speeds are:

vI(C) = [µ(SCC)σ(SCC)µ(MISC)σ(MISC)],

vI(E) = [µ(SCE)σ(SCE)µ(MISE)σ(MISE)],

vI(M) = [µ(SCM )σ(SCM )µ(MISM )σ(MISM )],

where functions µ(.), σ(.) give the mean and standard deviation. The collection of these three vectors, VI ,
composed the feature vector of a particular video for classification Step 1,

VI = bvI(C)vI(E)vI(M)c.

2.5.6. Feature vectors for increaseddecreased activity classification of HC

In this step, absolute changes in the behavioral patterns were used and new features were constructed
to display behavioral differences between näıve and drug-treated animals. The feature vectors for näıve
and drug-treated recordings at the first level of classification were labeled as VI N and VI T . Then, the
difference of vectors was constructed as

VII = VI
T −VI

N ,

and checked whether VII exhibits an increased or decreased activity. VII is labeled as VII
E or VII

I , depending
on whether the detection is an increase or a decrease in activity.

2.5.7. Feature vectors for drug determination step of HC: amphetamine-cocaine and morphine-diazepam
classifications

The videos labeled as VII
E were further labeled as amphetamine or cocaine-treated so that the exact

drug tag will be determined. Following Step 2 classifier labeling VII as VII
E , the Step 3 classifier decided

whether the animal is morphine-or diazepam-treated. Since morphine and diazepam both inhibited locomo-
tor activity, only a small part of the arena provided behavioral information. Feature vectors were changed
to display activity around the center. If the maximum of the sojourn counts appears at the grid gu?v?

,where 1 ≤ u?, v? ≤W , we focused on an ν × ν sub-arena around grid gu?v? on the sojourn count and mean
instantaneous speed matrices. The sub-arena, denoted by r?, is the set of grids

r? =
{
guv : u? ≤ u ≤ u? +

ν

2
− 1, v? ≤ v ≤ v? +

ν

2
− 1
}
.

The sub-arena r? is divided into 9 sub-regions r?ij of equal size where 1 ≤ j ≤ 3. The sojourn count SC(r?ij)
for a particular sub-arena r?ij is defined to be the sum of the sojourn counts within that sub-region. The
mean instantaneous speed value MIS(r?ij) of a particular subarena r?ij is defined similarly to be the average
of mean instantaneous speed values of the pixels falling into that sub-region.

Similarly, the corners, edges, and center regions, r?C , r?E , r?M are formed by grouping the sub-regions.
The sojourn counts and mean instantaneous speeds are calculated by adding the corresponding portions of
sojourn count and mean instantaneous speed matrices as:

SCr?C
= SC(?11) + SC(r?13) + SC(r?31) + SC(r?33),

MISr?C
= MIS(?11) +MIS(r?13) +MIS(r?31) +MIS(r?33),

SCr?E
= SC(?12) + SC(r?21) + SC(r?23) + SC(r?32),

MISr?E
= MIS(?12) +MIS(r?21) +MIS(r?23) +MIS(r?32),

SCr?M
= SC(?22),

MISr?M
= MIS(?22).
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The feature vector for the corner part is given by

Vr?C = bµ(SCr?C
)σ(SCr?C

)µ(MISr?C
)σ(MISr?C

)c.

The feature vector for the third classification step VIII is the concatenation of the feature vectors for all
parts, i.e., r. C , r. E, and r. M.

VIII = bvr?Cvr?Evr?M c.

The classifier processes VIII labeled it as morphine- or diazepam-treated.

2.6. Classifiers and validation scheme

In the classification step, Support Vector Classifier (SVC) and Linear Discriminant Classifier (LDC) are
used. SVC is based on support vector machines. Among all hyperplanes, that separate the given classes,
there exists a unique hyperplane which gives the maximum margin of separation implying that the distances
from the hyperplane to the nearest data points in the separated classes are maximized (Scholkopf B., 1999).
Support vectors are employed in finding this particular hyperplane, making margin of separation maxi-
mum (Hearst, Dumais, Osman, Platt, and Scholkopf, 1998). The application is implemented in MATLAB
(Mathworks, USA) using Pattern Recognition Toolbox PRTools (dui, ????). LDC employs linear discrim-
inant functions and looks for a function that gives the most efficient direction for discrimination, namely
linear discriminant function (Balakrishnama and Ganapathiraju, 2001).

For all classifiers, we investigated the test and training performance with series of classification experi-
ments. Training performance is described by howwell the classifier learns the characteristics of the classes.
While exploring training performance,we trained the classifier with a number of training examples and then
tested it with exactly the same set of training patterns. The size of training set was increased gradually
and the evolution of classification performance against training set size was investigated. Thus it was in-
ferred whether a classifier is able to apprehend the class properties or not. Test performance shows how
well the classifier performs when new patterns are investigated for class membership. While measuring test
performance, the classifier was trained with a number of training patterns and then tested by new patterns.
The number of training patterns was increased step by step and the classifier was tested by the rest of the
dataset at each step. As the number of training examples was increased, the classification performance is
expected to increase and reach to a steady state value.

In HC we started from two training samples and increased them until the steady state value of the success
rate was reached. Leave- One-Out (LOO) classification scheme on HC was also used. LOO uses a single
observation from the original sample as the validation data and the remaining observations are regarded as
the training data. This procedure was repeated such that each observation in the sample was used once as
the validation data (Duda, Hart, and Stork, 2001).

2.7. Performance

Success rates of SVC and LDC for HC and LOO are given in Fig. 5 and Table 1 For HC, 4 trials for each
number of training samples were made and the average as the success rate was obtained for each number of
samples. Success rate of about 90% was achieved as the number of training samples reached to 10.

By using the LOO classification scheme we checked whether SVC and LDC mislabeled the feature
vectors. Some of the animals in a given set of drug treatment groups displayed nonhomogeneous behavior
characteristics, which lead to mislabeling as shown in Table 1.

3. Discussion

This paper describes a novel approach to automatically discriminate psychotropic drugs by means of a
computerized video-tracking system which accomplishes this process by analyzing the locomotor behavior
alterations. This system extracts parameters like sojourn counts, instantaneous speeds, and regional activity
from the video recordings and employs a classification algorithm and finally reaches to a conclusion about
the drug administered.
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Figure 5: Evolution of success rates for HC Step 1 via LD and SV classifiers. LDC and SVC performances increased with the
number of animals and the success rates reached to a steady value after 10 samples. Data expressed as the mean±SD. HC:
Hierarchical Classification, SVC: Support Vector Classifier, LDC: Linear Discriminant Classifier.

Table 1: Success rates for each step of Hierarchical Classification using SV and LD classifiers. SVC: Support Vector Classifier,
U: drug-untreated video recordings, T: drug-treated video recordings, I: increased locomotor activity, MO: morphine, DI:
diazepam, AM: amphetamine, CO: cocaine.

SVC LDC # of recordings
Step 1 U 96% 92% 24

T 100% 100% 24
Step 2 I 92% 83% 12

D 92% 92% 12
Step 3 MO 83% 67% 6

DI 83% 67% 6
AM 67% 50% 6
CO 83% 83% 6
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Although motion tracking-based computer analysis for behavioral responses has been used for years,
the previous approaches were not intended to discriminate a particular drug among other psychoactive
agents employed. Automation of the analysis of locomotor activity renders drug screening and behavioral
phenotyping of experimental animal studies much easier and faster, consequently this will increase the
experimental throughput.

In this study, the algorithm we proposed was based on the analysis of unique feature vectors which
were derived from locomotion data. Feature vectors were used to distinguish animal behavior under the
influence of a particular psychotropic drug and compare them with the behavior of the animal before and
after drug administration and also with other drugs used in this study. These feature vectors constructed by
the use of the instantaneous speeds and sojourn counts, adequately represented the drug-induced alterations
in behavior and provided the categorization of the animals by feeding the information to the SVC and LDC.
Similarly, another method used by Drai et al (Drai et al., 2000) and Kafkafi and Elmer (Kafkafi and Elmer,
2005) successfully derived discriminative properties of amphetaminephencyclidine and amphetaminecocaine,
respectively. This algorithm was based on defining distinct modes of rat locomotion by segmenting the
behavioral data as staying in place and going between places according to the maximum speed attained
within the segment (Drai, Kafkafi, Benjamini, Elmer, and Golani, 2001). In the algorithm we proposed, the
total number of visits to each pixel were determined and then the cumulative speeds of the animal within
these pixels were calculated. Therefore, in our study instead of describing the behavior by segmenting
the time series of locomotion data, we used feature vectors that are based on behavior of the animal in a
two-dimensional matrix representing the arena.

The feature vectors and classifiers provided a final conclusion of HC with 7080% accuracy. Although,
the baseline activity of mice displayed variations among the groups,we observed over 96% correct labeling
for the drug-untreated näıve animals. The algorithm displayed 92% accuracy during the analysis step where
the drug-treated animals were sorted according to their increased or decreased activities. These findings
further support the efficacy of our feature vectors. Additionally, the algorithm was able to match the
animals and the drugs administered correctly even under the circumstances where both of the drugs yielded
similar cumulative distance curves. For example, both cocaine and amphetamine significantly increased the
cumulative distances traveled. In this case, the algorithm achieved 70% sucess rate in drug-animal matching.
Similarly, diazepam and morphine decreased the cumulative distances traveled, while the success rate was
still around 80%. It also should be noted that SVC performed better during druganimal matching steps
according to the LDC.

In the training phase of HC,we observed that the classifiers reliably and quickly learned the characteris-
tics of each classes. Success rates improved as the number of training samples increased. For the number of
training samples larger than 10, the classifiers seemed to fully comprehend the class characteristics. There-
fore, in this study 24 mice per group yielded enough discrimination power for the classifiers. The mislabeling
of SVC and LDC usually corresponded to the same animals. This finding indicates that these mislabeled an-
imals displayed a different behavior than the rest of the set. We observed that except amphetamine-cocaine
classification SVC performed better than LDC in all the classification steps of LOO scheme.

In order to simplify the developmental process of the software we focused on four psychotropic drugs with
well-defined behavioral properties. This simplification enabled us to achieve our goal of efficient automatic
categorization. However, at this current developmental stage, performance of our software is expected to
be lower with drugs from other psychotropic groups and in different experimental designs. For instance,
psychoactive drugs with mixed action might yield lower success rates. But at this stage, we did not try to
evaluate the effects of psychoactive compounds with mixed behavioral properties, since this was beyond the
scope of our study. Although our data was acquired in a paired fashion we also compared the unpaired data
with their unmatched controls. In this setting, our software achieved similar success rates with paired design
during the comparisons of näıve vs. näıve or näıve vs. drugs inducing behavioral inhibition. However, our
software was less accurate when discriminating the psychotropic drugs which induced increased locomotor
activity. At this stage, our software utilized only two parameters for the discrimination processes. Addition
of more parameters like revisits to recently visited sites and rearing behavior is expected to improve the
success rates by increasing the discriminating power. Additionally, our software is a learning-based program;
therefore, by introducing additional data acquired either from the drugs we employed and the other psy-
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chotropic drugs, improvement of the software performance is expected. Thus, we are planning to implement
these modifications into the program and feed with additional data which will possibly increase success rates
and reduce the number of possibilities in the case of a new drug or unpaired settings.

In conclusion, the method we developed automatically discriminated drug-treated and -untreated mice
and matched the animals with their corresponding psychotropic agents. The feature vectors and classifiers
used in our study proved to be effective and sensitive enough to represent the behavioral characteristics of
the animals under the influence of psychotropic drugs.
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