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ABSTRACT 3. METHODOLOGY

Symptoms of epilepsy, which is characterized by abnorThe challenge of this research relies on the assumption that
mal brain electrical activity, can be observed on electroenthe chaotic characteristics of an EEG signal in various fre-
cephalography (EEG) signal. This paper employs models qjyency bands provide more descriptive information about
chaotic measures on standard clinical subbands of EEG arde physiological condition of the person. In this respect,

aims to help detection of epilepsy seizures and diagnosis @favelet transform enables us to handle the signal in diftere

epileptic indicators in interictal signals. resolution levels and within several frequency bands. Sec-
tion 3.1 expounds details about standard clinical subbands
1. RELATED WORK of EEG and derivation of them by multiresolution analysis.

Lehnertz divides EEG analysis techniques into two Cate]’he construction of phase space and derivation of its distin

gories, [19], as linear and nonlinear methods. The algosth :'(\alse 22382;: features are explained in Sections 3.2 and 3.3,
described in [11], [17], [15] are regarded as linear methods P Y-

Juling et. al., [17] and Jahankhani et. al., [15], consider,
wavelet based methods to extract time-frequency charactq
istics of EEG to discriminate between ictal and interictal
phases. Among nonlinear analysis techniques neural neEEG signals are handled in five standard frequency bands,
works is a widely used approach, [20], [9]. In [8], authorsnamely,delta(0—4Hz), theta(4—8Hz), alpha (8 — 12Hz),
employ short term Lyapunov exponent to classify “normal”’beta (13— 30Hz), andgamma(30— 60Hz), [2]. Therefore

and “abnormal” EEG signals. The time evolution of the tra-frequencies between-060Hz provide significant informa-
jectory is derived from recurrence plots to anticipates&g  tion about the brain electrical potential. Letbe any time

in [21]. Hamadene et al., [13], interpret recurrence plots f series from one of the sets indicated in Section 2. Since
prediction of epileptic seizures similar to [21]. Entromrr Xxg is recorded at a sampling rate of 18dz frequencies
lated features are used in predicting seizures, [22], Hetec higher than 6Bz appear in its spectral analysis. Obviously
patient-specific pre-cursors, [5], and discriminating®sn a low pass filtering operation is needed to focus on the
seizure and pre-seizure periods, [6]. Independent conmponesignificant frequency bands. A YCorder Butterworth low
analysis [16], phase locked loops [12] and combination ohass filter with a suitable cut-off frequency is employed in
several of the above approaches [23] are among other EEGe extraction of this band.

signal processing techniques.

.1 Standard Clinical Subbands of EEG and Multireso-
ution Analysis

) . ) Herrmann et. al., [14] state thagamma activity is
In this research, we aim to model chaotic measures oflosely correlated with cognitive functions and propose
a standard subband of EEG and distinguish between diffethat epileptic indicators of EEG are a direct consequence
ent characteristics concerning epilepsy. The outline ef thof increase ingammaactivity. Moreover, Willoughby et.
paper is as follows. Section 2 describes the dataset detussg|., [24] show that interictal EEG signals from epileptic
in this work. Section 3 explains details of the proposedpatients and healthy people differ enormously in terms of
method. In Sections 4 and 5, details about the cIassificatiogammaactivity_ Hence, we focus on thgammasubband
schemes, performance rates and conclusions are presentegind employ chaotic measures to represent its discrimipatin
characteristics. Th@ammasubband is emphasized by
2. EEG DATASET applying a single stage wavelet decomposition using a third

The dataset prepared by the Clinique of Epileptology 0forder Daubechies filter on the low pass filtered signal. The

B Uni itv is utilized in thi h. 131, Sinal resulting detail coefficients cover the information in the
onn University is utilized in this research, [3]. Singleath o2 ma"subband and hence we choose to use such a filter in
nel EEGs are recorded from people with different brain elecbur analvsi

. ; S X ysis.
trical potential characteristics at a sampling rate of 673
Hz for 236 sec. These EEG recordings are grouped int . ,
three sets denoted By, E, andS. SetH contains 200 EEG 32 Construction of Time Delay Vectars
recordings from healthy people, while s&isandSinvolve  As a nonlinear dynamical system evolves in time, it could
recordings from epileptic patients. The 200 recordingsin s get sufficiently close to a set of states and remain within
E are taken in the interictal period, i.e. between seizures. Sclose neighborhood of that set, even if slightly disturbed.
Sis comprised of 100 recordings in ictal period, i.e. duringSuch states are called attractors. Complexity and chaotic
seizures. characteristics are the two main descriptors of an attrac-



tor. Complexity is related to geometric properties of the I(m) vs m for s1°

attractor, where chaoticity indicates the rate of diveogeor 14

convergence of nearby trajectories in phase space. 12

As the EEG signal is viewed as the output of a nonlin- !

ear dynamical system, it is observed that chaos related 208

features differ between normal and epileptic brain agtivit “os

In this research, we focus on the chaotic behavior so as to 04 me=o
discriminate between healthy, interictal and ictal EEG. In 02 [ [ T

the analysis of chaotic behavior, recurrence rate is enegloy ' I l 1%

as a measure of chaos. The computation of recurrence rate % 5 10 15

requires formation of time delay vectors. Letbe any time
series from one of the sets presented in Section 2dar
the detail coefficients o%g. Time delay vectors fod; are
formed in the following manner.

Figure 1: Evolution of Mutual Information for a sample time
series from seb

By, (do) = {d (i), di(i +my),....ch (i + (do— 1)mo)}, 3.2.2 Determination of Minimum Embedding Dimension

1 <7< ng, Ny = N, — (do— 1)y, 1) Cao describes a requirement for an embedding dimersion
where dy denotes minimum embedding dimensioEng to be accepted.astwe e'mbedding dimension and a method
denotesoo timum lag ans. is the size of the time series for the calculation of this number, [7]. Assume the time de-
d P 9 dy lay vectorf (d) is formed fromd; using some arbitrary em-
1 bedding dimensiod, as in Equation 1. According to Cao, a
In order to form time delay vectors, optimum lago true embedding dimensiodp, satisfies the requirement that

and minimum embedding dimensiala need to be deter- two time delay vectorsp (do) and Bj (do), that lie close
mined. Details about calculationswf anddy are presented to each other irdg-dimensional space, will still be close to

in Sections 3.2.1 and 3.2.2. each other i{dg + 1)-dimensional space. In order to inves-
tigate whether a certain embedding dimengidfulfills this
3.2.1 Determination of Optimum Lag requirement or not, we check the proximity of two time delay

Optimum lag is the amount of shift between two portionsyectors, which are nearest neighborsglidimensional space,

. . id

of the time series, which yields minimum overlapping infor- N (d+ 1)-d|men$|0nal space. '—‘f-ﬁ(l )(d) denote the near-
mation. Mutual information functiorl, which indicates the est neighbor of3;, (d) in d-dimensional space ara, (i,d)
amount of mutual dependence between two variables, is elgenote the ratio of distance between these two time delay

ployed in the computation of optimum lag. For two discretevectors ind-dimensional tqd + 1)-dimensional spaces, i.e.,
random variableX andY, mutual information function is

calculated in the following manner, Hﬁcih(d) B Bgl(i,d)(d) H

(xy) WO

p
1(X;Y) = x,y)log(——————).
U= 2, 2 PO e
. where||.|| denotes Euclidean distance. I, (d) denote the
Let dj contain the data points af between time instants mean value o&g, (i,d)’s:
i andNg, —m. Similarly, d;*™ contains data points af;
between time instanfst mandNg, : 1 Ne—dm

Egy(d) = & ag, (i,d),
| = {d1(i),d1(i +1),...d1 (Ng, —m)}, Ng, —dmy i;

+m _ ; ;
dy "= {da(i+m),da(i+m+1),..d1(Ng, )} andE (d) be equal taEg, (d + 1) /Eq, (d). Eg, is expected
; to settle around a certain value for embedding dimensions
We di(ir:note the amount of- mutual dependence betvagen larger than some particulak, — 1. As a rule of thumbdy
andd; ™" by I(m). As I(m) is computed for several values s called the minimum embedding dimension. However in
of m, the evolution of mutual dependence between twqyactical computationsE}, could yield misleading results
time series with respect to various values of lag can bey,e (g limited number of elements of phase space. To over-

observed. Obviously, a larger lag leads to little overlagpi come this problem, Cao redefines the quantification of neigh-
information, where a smaller lag provides the number of dat@ 41004 condition b (d)
1 1

points in di1 anddil+m to be large enough to make plausible

inferences. Therefore the first local minimum Igf) is 1 N=dt

proposed to be the optimum lag, [1]. Egl(d) - N d Z |dy (i +dT) — di(n(i,d))].
—dr £

B (d+1) - B+ 1)

Figure 1 depicts an example of evolution of mutual in-

formation for an element of s&with respect to increasing In this case, the variation between successive embedding
values ofm. Optimum lag is found to bey = 9 for this  dimensions is investigated bi; = Ej (d + 1)/Ej (d).
particular time series. The minimum embedding dimension could be calculated



for each time series by applying the same rule of thumb on| ..
Egl and a phase space could be constructed accordingly. In B
such a case, the number of time delay vectors contributing| £.| - ‘ Co
to the phase space from a particular time series will be | g

Time Delay Vector Ind
Time Delay Vector Ind

Ndl—mo(do—l). i
Here one should note that, althoudl, is fixed in our 17 ' 1 I
case,np and dp can change the number of constructed C T mevemyVesoridec C 7 mevemyVesorimdex
time delay vectors pretty much. In order to have a fair (@) (b)

comparison, it is preferred to calculate a separagefor

eachd; and to keepd fixed. To determine the optimum Figure 2: Recurrence plots of a sample time series from set

constant for minimum embedding dimension, we calculatdd for (a) € = 15 and (b)e = 20.

do’s for all possible time seried; and pick the one which

is most yoteq. It is observed thdy = 7 is the. minimum

embedding dimension for most of the time series. ployed.

N

3.3 Modding Recurrence Rate Behavior _ 1 P

g HJ_W_Z R(,j).

After determining optimum lag and minimum embedding i)=1

dimension, one can construct time delay vectors for eacheature vectors are derived by examining the evolution of
gammasubband as in Equation 1. The collection of timeyecurrence rate against different values of distance ttiotds
dtialay vectors form a lagged phase space with elementsyy g particular distance threshok, the recurrence rate of
Bdl(do)' The discriminative features of a pal’tICU|aI’ EEG |agged phase space of time Seﬁegs given by

recordingxg is derived from the recurrence properties of this

lagged phase space. ) Nay , J.

| | | | W = > Olec— | B, (do) — B (co) ).
Section 3.3.2 gives details about modeling recurrence dp i,]=1
rate and describes the derivation of feature vectors. The I#]

distribution of feature vectors is illustrated in SectiaB.3. To observe the evolution of recurrence rate against dis-

tance threshold, we calculalkla"(jl for various values of

] ) ] & € {&1,&,...,&« } and obtain a series of recurrence rates,
Chaos can be measured by correlation dimension, recurrenq%l _ {qjclh’wczjl’m’wgl}_ As seen in Figure 3-(a), these

rate, determinism percentage, Hurst exponent, or large ries are observed to exhibit a different nature for Bets

Lyapunov exponent, [18], among other methods. Here WE and S and therefore could be used to represent features.

make use of recurrence rate. Any two states, which IIGf—|owever, using raw recurrence rate series is not handye sinc

in some proximity smaller thar, are called recurrence he size ofWy, could be large depending on the number
states. Recurrence plot is a graphical tool to visualize th f distance th%esholdsk{. In order to provide a dimension

recurrence states and recurrence rate is a simple recarre . - .
quantifier derived from the recurrence plot. r}%ductlon, a simple model is developed ¥y, such that the

feature vector of a particular time seridsis composed of
the parameters of the adopted model4g .

3.3.1 Measures of Chaoticity and Recurrence Plots

Let R denote theN x N recurrence plot of a phase
space with elements;, where 1< i < N, asN denotes the . K . o i
number of elements of the phase space. The value of a poifi ! SXamining the graph ofFg, againstg, it is ob

(i, j) on the recurrence pld is computed by the following served that it exhibits almost a linear increase for certain
e<7:]uation values ofg. Moreover, it is clear from Figure 3 that the

R(i,j) = O(c — HUi 70_||) linear regiqns have different slopes in general and occur
’ HiZ mostly at different values ofi for setsH, E andS. Thus the

where0® is the Heaviside step function amds the distance
threshold. It is obvious from the above equation, that if
there are any two states in the phase spacandaj, which
are in some proximity smaller thasy the value ofR(i, j)
is 1 and otherwise 0. Figure 2 presents two recurrence
plots of a sample time series from ddtfor ¢ = 15 and =
€ = 20 cases. As expected increasing the threshold makeg
the neighborhood condition looser and hence number of
recurrence points increases.

@) (b)

3.3.2 Recurrence Quantification and Derivation of Feature'?Igure 3.' (a) EVOIUt'On.Owd.l againste fqr severa} sample
vVectors time series, (b) Approximations for the linear regions.

In recurrence quantification, recurrence rddewhich basi-
cally denotes the density of recurrence pointRinis em-  evolution of Wy, can be represented using the parameters of



the linear approximatioage + by and the value of distance 4.2 Test Performance

thresholdk, at the center of the linear region. In this manner’From Figure 5, it is observed that the classifier performs bet
parametersao, bo and & are assumed to summarize theter in distinction of setsl andS. As number of training sam-

evolution of Wy, with respect to distance threshold and areples gets over 20, success rates reach 88% and 94% respec-
considered to provide a distinction. " X
tively. For the sek, performance is around 72% regardless

o of the number of training samples.
3.3.3 Distribution of Feature Vectors

After determining a model for the evolution of recurrence H E
rate and solving for the model parameters, we should check
whether these parameters provide a distinction between un-
derlying brain electrical potentials. Figure 4 depicts die
tribution of parametersy, by and & for setsH, E, S and
verifies that the parameters occupy mostly different regjion
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Figure 5: Evolution of success rate in testing
Figure 4: Distribution of features

4.3 Comparison with Existing Techniques

4. CLASSIFICATION Andrzejak provides a list of papers which use the same
dataset in analysis and classification of EEG signals, [4].
K-nearest neighbor classification is employed in discrimi-Most of these papers consider different groups of EEG
nating the physiological differences between the scalp EEGignals by either eliminating some classes, dividing some
recordings described in Section 2. This section is dedicateclasses into further sub-classes or formulate a differesti-p
to the details of the classification scheme. Section 4.1 edem by comparing the symptoms of epilepsy to symptoms
plains the cross-correlation schemes used in the testidg aof other physiological disorders. Among these papers, [10]
training of linear discriminant classifier. Performanctesa and [1] consider a similar problem formulation to ours. Our
are presented in Section 4.2. Comparison with the existingcheme employs a phase space, which is built similar to the

techniques is handled in Section 4.3. one in [1], however, we introduce the modeling of recurrence
rate of the phase space and classification using the model pa-
41 Cross-Correation Scheme rameters unlike [1]. Gautama et. al. [10] treat the same-prob

lem considered in this work by employing delay vector vari-
The test performance is investigated via a series of classifance (DVV) method. They achieve 486 overall success
cation experiments. Test performance shows how well theate. With our method, overall success rate is always around
classifier performs when new patterns are investigated fd5% as seen in Figure 5. Thus our method outperforms DVV
class membership. While measuring test performance, tha overall performance.
classifier is trained with a number of training patterns and
then tested by new patterns. The number of training patterns 5 CONCLUSION
is increased step by step and the classifier is tested by the
rest of the dataset at each step. As we increase the numHdarthis paper, we propose a method for discrimination of EEG
of training examples, we expect to see the classificationecordings from people with different epileptic charaister
performance to increase and settle down around a steadigs. A model is developed for the recurrence rate derived
state value. In this manner, we can see how large a data debm gammaband of the EEG signals. It is shown to exhibit
suffices to describe the classes thoroughly. different natures for healthy, ictal and interictal cas&éhe
proposed classification scheme performs well for healtlly an
ictal EEGs but only fairly good for interictal EEGs and needs
The graphs below show the success rates while nunte be improved. As a future work, we will consider apply-
ber of training samples is increased from 5 to 70. Foiing hierarchical classification with a more effective cléies
each case ten experiments are made. The solid line showsoreover, the multiresolution analysis could be improvgd b
the mean of those, while the vertical ones indicate theiemploying a filterbank which results in less aliasing than th
maximum and minimum. Daubechies wavelets.
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