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1. Introduction

Ambient intelligence is a rapidly growing field,
particularly together with the recent developments in
sensing technologies, decreasing costs and increasing
interest in assisted living, service, surveillance etc ap-
plications [1]. Although, in the early days, it was
confined to sparsely populated indoor areas such as
domestic environments, recently highly dynamic pub-
lic spaces, both in and outdoor are addressed [2].

These intelligent environments are often
equipped with multi-modal sensors, where most
common modalities include vision and lidar, but
depending on the application domain also haptic,
acoustic, radar or wifi-signals may be used among
other technologies [4]. In some cases, sensors may be
part of the infrastructure (or the environment), while
in many other cases there are also on-board sensors
located on autonomously moving platforms (such as
robots, electric wheelchairs or self-driving vehicles).

The purposes of these sensors are usually track-
ing of mobile obstacles and self-localization of moving
platforms. For continuous tracking and/or target as-
sociation, the spatial relation of the sensors, i.e. posi-
tional calibration, needs to ascertained. However, the
calibration of such a network over a large dynamical
space is a challenge due to the following issues:

• Privacy concerns may not permit collection of
target-specific information.

• Field of views (FoV) do not necessarily overlap.
• Sensor readings from various modalities may not
permit detection of features of same nature.

To account for these issues, we propose a sim-
ple yet e�cient method for topological calibration of
distributed sensors with various modalities. For that
purpose, we use the arrival times of targets into each
FoV and compute the correlation between di↵erent
sensing ranges based on a set of assumptions. Subse-
quently, we test the resiliency of the method in real
world settings. Our results demonstrate the e�cacy
and functional domain of the approach under certain
limiting factors.

2. Related work

The proposed event correlation based approach
presents similarities to the binary sensor networks,
which have the advantages of being simple, easy to
generalize, fast to process and thus are used in var-
ious studies. For instance, Aslam et al. define a bi-

nary data structure, where sensor readings indicate
whether the target is moving towards the sensor or
away from it [3]. Given the sensor locations, they ap-
ply a particle filter based approach on these readings
to obtain target trajectories. Other important works
in this area involve [6] and [7], which assume a binary
reading as in/out of FoV but require sensor density
to be high enough for the FoVs to overlap. In com-
parison to these studies, we treat a more fundamental
problem. Namely, given only sensor readings without
their relative positioning, we try to derive the topo-
logical relation 1.

Although from a sensor localization point of view,
Kwon et al. treat a similar problem [8], they consider
a particular case, where the events registered by indi-
vidual sensors are generated from a global event (as in
the case of seismic events) and propagate through the
FoVs of various sensors, where in our case, the events
(arrivals) are independent. Besides, our study distin-
guishes itself from the wellknown time di↵erence of ar-
rival (TDOA) methods, since TDOA assumes the sig-
nal to travel with a known velocity, where our method
does not require any such condition [9]. On the other
hand, cooperative localization methods require a sub-
set of nodes with known locations[10], in contrast to
our method, which treats all nodes in the same man-
ner (with unknown locations).

In addition to these distinctions, we can list the
advantages of our approach as follows:

• It does not need object identification, which
means anonymous data can be used.

• It o↵ers the possibility of fast online estimation,
since it uses a plain array of numbers instead of
high level object features such as pattern, shape,
color etc.

• It can easily be incorporated with di↵erent
modalities.

• It enables simultaneous calibration and proba-
bilistic target association 2.

However, there are several requirements to
have satisfactory performance using this approach.
Namely, this method would su↵er degraded perfor-
mance rates under congestion and high variation on
target velocity. Nevertheless, in what follows, we will

1Of course, once we achieve the calibration, the proposed
method can be extended to probabilistically associate targets
and obtain piece-wise continuous tracking.

2Although the latter is out of the scope of this paper.



demonstrate that it achieves satisfactory performance
under uncontrolled real-world settings based on an ex-
tensive dataset recorded in a dynamic public space.

The outline of the paper is as follows. We will
first formulate the problem in a formal manner and
describe the solution strategy. Then, we will intro-
duce our dataset and apply the method on it to prove
the successful performance. Finally, we will list our
conclusions and describe the future work.

3. Problem formulation and solution

strategy

Consider that an interconnected system (such as
a web of streets) is scanned using a multi-modal sensor
network at various locations. In order to express this
sensing environment analytically, we may use graph
terminology [5]. Assume that there are Nn edges on
this graph, which represent the sensor locations.

Fig.1 Example of a simple subgraph and relation
of sensor readings.

Assume that we are particularly interested in the
relative position of two edges like Ei and Ej on the
(sub)graph given in Figure 1. Let these edges collect
information from a limited space around them, i.e.
their FoV. Provided that Ei and Ej are equipped with
position tracking sensors, we can record the arrival
and departure times (in and out of the corresponding
FoVs) of each target (or equivalently, agent).

Assume that the vertices are directed in such a
way that any agent that arrives in Ei goes to Ej and
no agent arrives from the opposite direction. In this
sense, Ei acts as a source and Ej acts as a sink in the
subgraph. Suppose that a (mobile) agent ↵ appears at
Ei subject to an arrival distribution of Pi and travels
with a velocity of v↵ towards Ej . We express the
arrival times observed at Ei with a function Ti[n],

Ti[n] =

(
1, t↵ = nts
0, otherwise

where t↵ is the arrival time of agent ↵ and ts is the
sampling interval of the sensor. Clearly, for the dou-
ble edge {Ei, Ej} and single vertex directed subgraph
given in Figure 1, where the agents have a constant

velocity, Ti is free from any sort of disturbance and
thus its exact replica will be observed at Ej after a
time delay of td 3,

Tj [n] = Ti[n� k],

where td = kts. The delay term depends on v↵ and
the vertex length Lij with the following relation,

td =
Lij

v↵
.

Assuming that the topological relation of the
edges (i.e. Lij) are not known but only the obser-
vations of Ti and Tj are available, we can solve for
the value of td and discover the connectivity relation
and distance between the edges taking a correlation
stand-point.

Remember that the cross-correlation of two sig-
nals f [n] and g[n] is defined in discrete time domain
as follows,

(f ⇤ g)[l] =
1X

n=�1

�
f [n]� f̄

�
(g[n� l]� ḡ) ,

as f̄ and ḡ stand for the expected values of f and g, re-
spectively. Without loss of generality, we can replace
g by f and obtain the auto-correlation coe�cients for
f ,

(f ⇤ f)[l] =
1X

n=�1

�
f [n]� f̄

� �
f [n� l]� f̄

�
.

This function is integrable provided that f is of
finite energy, i.e. finite support. In addition, it obvi-
ously achieves the maximum at l = 0, which is equal
to the energy of the normalized signal ef [n],

E ef = h ef [n], ef [n]i =
1X

l=�1
| ef [n]|2,

where
ef [n] = f [n]� f̄ .

Similarly, it is trivial to prove that correlation of
a signal f [n] with a delayed version of itself by any
n0, g[n] = f [n� n0], peaks exactly at n0,

n0 = arg max
l

(f ⇤ g)[l].

Here instead of f and g, we can use the time series of
arrivals Ti and Tj . For such arrival time series, it is
plausible to assume that the observations come from
a limited time interval of [t0, tf ], due to the practical
limitations of real world applications. It directly fol-
lows that the signal is of finite support. Therefore,
the estimation of td is guaranteed, provided that the

3Note that Ti and Tj are functions defined in discrete time
domain with binary values and thus do not have a derivative.



observation duration is su�ciently long td < tf � t0.
Then, the delay term can be solved as,

k = arg max
l

(Ti ⇤ Tj)[l], (1)

and the relative position of the edges is obtained
through,

Lij / k ⇤ ts.

If v↵ is available, the length of the vertex can also be
calculated within an accuracy of v↵ts.

However, these findings are valid under a set of
assumptions, which introduce several limitations. Be-
low, we list some causes of such limitations:

• Variation of velocity: The cross-correlation term
(Ti ⇤ Tj) might be subject to clutter if v↵ has a
large variance.

• Directionality of tra�c: The vertices may be bi-
directional such that the tra�c on Lij is inter-
laced.

• Bifurcations: Edges Ei and Ej may not be con-
nected directly and some agents leaving Ei may
be bifurcated towards edges other than Ej .

We may express the impact of such factors on Ti

with a disturbance term such that,

Tj [n] = Ti[n� k] + d[n].

However, it is not trivial to express d[n] analyti-
cally taking in consideration all the dynamic fac-
tors. Therefore, in what follows, we directly apply the
cross-correlation approach on a real world dataset and
prove resiliency of the proposed approach even under
various violations of the assumptions listed in the so-
lution strategy.

4. Implementation on real world data

We consider the tracking dataset introduced by
[11, 12] to demonstrate the application of our method
in real world cases. This dataset is recorded in a
network of underground pedestrian streets in Umeda,
Osaka. The experiments are carried out at an inter-
section of two particular streets of this underground
network (see Figure 2) and a total of 12791 people are
tracked over a 6-hour time window.

The agents (pedestrians) arrive in and depart
from the environment at four zones (the ends of the
two streets). We denote these four zones with let-
ters A⇠D. In addition, although we scanned the en-
tire environment, in order to create the e↵ect of non-
overlapping FoV, we assume that sensory information
is available only from four sensing zones, i.e. A⇠D.

We call the amount of time required to go from
one sensing zone (or equivalently an edge in our graph
theoretic approach) to another one as “travel time”.
This corresponds to the delay term td as described
in Section 3. In order to understand the distribution
pattern of td, we compute its histogram with bin size

Fig.2 Normalized density map of the environment.

of 2 sec for each route (i.e. source/sink pair) as in
Figure 3. We consider peak values of these curves to
constitute the ground truth of td for respective routes.
Note that the nonzero standard deviation already in-
dicates that the variation of agent velocity has a more
prominent impact on longer routes.
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Fig.3 The pdf of travel times for all possible
source-sink pairs

Next, we apply our method on the trajectory seg-
ments from sensing ranges A⇠D and compute the cor-
relation values. We illustrate the correlation terms
over a given time window in Figure 4. In this case,
the clutter is not only due to deviation of target ve-
locity but also directionality of the tra�c and bifurca-
tions. Therefore, the patterns of the curves are more
distorted and significantly di↵erent than the ones in
Figure 3.

However, despite the clutter, we still observe sig-
nificant peaks on four curves, i.e. the ones relating
AB, AC, AD, and BC. In addition, the locations of
these peaks are similar to those presented in Figure 3,
which indicates that the method is capable of estimat-
ing the travel times with satisfactory accuracy. For
the remaining two cases of BC and CD, there are no
prominent peaks and the pattern of the signal is dom-
inated by clutter.

The reason for this is the unbalance of tra�c be-
tween various routes. Namely, there are few agents
traveling between these routes as presented in Table 1
in comparison to the other routes with accurate esti-
mations.

5. Conclusion and future work

In this study, we describe a simple and e�cient
positional calibration method for a distributed sensor
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Fig.4 Correlation terms for all possible routes.

Table 1 Number of agents traveling on all routes.
Route AB AC AD BC BD CD
Nagents 563 782 2732 2199 265 135

network with various modalities. The proposed ap-
proach does not require target-specific information,
respects privacy concerns, o↵ers the possibility of fast
and online calibration, can easily be incorporated
with various sensor modalities (provided that pres-
ence/absence of the targets in FoV can be registered),
and has the potential of simultaneous calibration and
target association. Although, it is developed based on
a list of assumptions, it is demonstrated using a real
world dataset that even though there are reasonable
violations, it can still cope with the dynamic factors.
Of course, in order to assess the exact limitations of
the method, we cannot carry out experiments in the
real world addressing each possible case. Therefore, in
the future we will design a simulation framework for
evaluating the e↵ect of common restrictions at vari-
ous degrees illustrating the functional domain of the
approach and the extend of limitations.
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