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Abstract—The goal of this study is to understand the effect of
presence and lack of grasping motivation on the gaze behavior
over a time window. To that end, we derive a heat map from the
gaze data for each 1 sec time interval and consider its centroid to
coincide with the centroid of the grasping polygon. By estimating
the tendencies in assigning grasping regions, grasping polygons
of unknown objects are estimated. The similarity of estimated
polygons is computed using intersection rate and Jaccard index
and it is found that (i) gaze behavior of motivated subjects present
smaller correlation with grasping regions than unmotivated ones,
and (ii) correlation increases as time elapses for both cases.

Index Terms—Grasping, gaze, attention

I. INTRODUCTION AND RELATED WORK

Using gaze data to discover grasping affordances is rather
an unexplored field. Only recently, several studies are carried
out to investigate the effect of familiarity of objects and the
intention of the subjects (lifting or using) [4], readines to
act [5], as well as the effect of center bias on gazing and its
evolution over time [1] and distribution of gaze over functional
and manipulative parts of tool objects [2], [3]. The findings
indicate that manipulative ends are gazed more often and this
effect becomes stronger, provided that the subject is familiar
with the object, is ready to act, and has the intention of
“using” rather than “lifting”. Under the light of these findings,
it seems that estimating grasping regions of objects from gaze
information of subjects with intentions of using or lifting
the objects, is not possible. In this study, we contrast such
motivations with lack of motivation (i.e. free viewing) and
analyze temporal variations in gazing.

II. DATASET AND EXPERIMENT PROCEDURE

We use the freely available “Learning to grasp” dataset of
Cornell University, which contains 1034 images of a variety
of graspable objects from various orientations, together with
their annotations of grasping regions as quadrilaterals [6]. A
random subset of 432 images are displayed as a slide show
viewed by four subjects, where two subjects are instructed to
image grasping the objects and the other two carry out a free
viewing task, henceforth referred as motivated and unmoti-
vated, respectively. As the subjects view the clips resting on
a chin rest, their gaze information is collected by an infrared
sensor oscillating at 70 Hz.
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III. ESTIMATION OF GRASPING REGIONS

To reveal the relationships between gaze and grasping
regions, we build a heat map for the set of gaze points within
each 1 sec time interval. The centroids of these heat maps are
considered as potential centroids of grasping regions.

For creating a grasping polygon at these locations, we need
to specify their morphological properties, i.e. size, inertia ratio
and orientation. These values are determined by identifying the
tendencies in choice of grasping polygons in the ground truth
data. Namely, several properties of the object are proposed
to be constitutive elements in specifying these values and
empirical relations, which are found to indicate a significant
correlation, are modeled in a parametric way. These models
are in turn used to specify the morphological properties of
the grasping polygons of unknown objects. The agreement
between the ground truth and generated polygons is quantified
with intersection rate and Jaccard similarity index.

A. Determining centroids of grasping regions

Each image is displayed for 3 seconds, and a total of
roughly 165 gaze points are gathered during the display period.
Grouping gaze points for every 1 sec time interval, we obtain
3 subsets. A heat map is built for each subset y kernel density
estimation. In order to get a continuous map out of these
discrete coordinates, we apply a Gaussian kernel kg with
a spherical covariance matrix around each gazed point. We
compute kg with support of 101 × 101 px and a proper
bandwidth in relation to the screen resolution, the distance
of the subject to the screen and human field of view. The
centroid of the map is considered as the potential centroid of
the grasping region.

B. Determining morphological properties of grasping regions

We consider the object size So, orientation θo and inertia
ratio Ro as potential determining factors on morphological
properties of grasping regions. In order to derive So, θo and
Ro, we obtain the binary foreground, FB and compute So and
Co as the 0th and 1st moments of FB .

Next, an elliptic model is built to derive θo and Ro by
solving for the eigen values λp,s and eigen vectors vp,s of
FB such that λp > λs, FBvp,s = λp,svp,s. The principal and
secondary axes ~rp,s of the elliptic model are aligned with the
unit vectors v̂p,s. Thus, θo = arctan 2(v̂p, v̂s).



For obtaining Ro, we rotate the image around Co by −θo
and compute its horizontal and vertical projections, which
can be used to approximate ‖~rp,s‖ such that Ro ∈ (0, 1]
is computed as ‖~rs‖/‖~rp‖. Thereby, three descriptors of the
object {So, θo, ro} are derived. Regarding grasping regions,
similar descriptors asSg , θg and Rg , are computed using
directly the annotated vertices.

C. Empirical observations and models

To understand grasping intuitions, several descriptor pairs
are proposed to have a potential correlation and their relative
distributions are examined. If the empirical data is found to be
correlated, a parametric model is built to reflect that relation.
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Fig. 1. Empirical observations relating morphological properties of polygons.

Firstly, we examine the relation between sizes, So and Sp,
presented in Figure 1-(a). It is not surprising that grasping
polygons of small objects are small and the size grows in
a somewhat negative exponential relation with respect to the
size of the object, settling around a stable value for very large
objects. The model given in Eqn. 1 is proposed to reflect this
relationship,

f(Sp|Cs, λ) = Cs(1− exp(−λSo)), (1)

where Cs is the scaling factor and λ determines the rate of
decay. After calibrating these parameters on the cumulative
data, we obtain the approximation in Figure 1-(a).

When we examine the relation between inertia ratios, Ro
and Rp, we see that Rp is roughly around 0.6, independent of
Ro. Thus, Rp is assumed to come from the standard normal
distribution, Rp ∼ N (µrp, σrp).

Finally, we examine the relation between orientations, θo
and θp and observe that the relative distribution suggests an
offset. Thus, it is decided to study the relative orientation,
∆θp = θo−θp. The empirical distribution of ∆θp is found not
to be correlated with So or Ro. But the peaks around ±π/2
in Figure 1-(b) suggest that the polygon is often positioned
perpendicularly to the principal axis of the object. In order to
model ∆θp, we propose using a von Mises distribution, which
is the circular equivalent of the standard normal distribution,

f(∆θp|µ∆θp, κ∆θp) =
exp (κ∆θp(∆θ − µ∆θp))

2πI0(κ∆θp)
, (2)

where µ∆θp and σ∆θp are analogous to the mean and standard
deviations of normal distribution and I0 is the modified Bessel
function of order 0. The resulting model illustrated in Figure 1-
(b) is considered to provide a satisfactory approximation.

IV. RESULTS AND CONCLUSION

We divide the set of 432 images into three subsets and
calibrate the models defined in Section III-C using two of the
subsets, where the third subset is used for estimation. Denoting
the estimated grasping region with E and the set of ground
truth polygons with G, we quantify estimation performance
using two metrics, namely intersection rate I(E,G) and
Jaccard index J(E,G). Intersection rate quantifies how often
the estimated polygons have a nonzero intersection with any
of the ground truth polygons, whereas Jaccard index measures
how good this match is,

J(E,G) = max
i

(
E ∩Gi
E ∪Gi

)
. (3)

Since in the ground truth several polygons are defined for
each image, we consider the similarity with the best matching
polygon in Eq. 3. In addition, we evaluate accuracy at every
1 sec interval (t0, tm, tf ) and over entire display period (tT ).

TABLE I
INTERSECTION RATE AND JACCARD INDICES (%).

t0 tm tf tT

I(E,G)
Motivated 63.19 85.06 84.49 89.69
Unmotivated 77.43 85.99 85.30 90.27

J(E,G)
Motivated 14.86 22.91 23.69 23.41
Unmotivated 22.72 30.08 32.25 32.68

Table I suggests that gaze of motivated subjects have
roughly the same rate of intersection as the unmotivated
subjects (I(E,G)). However, the Jaccard indices are much
lower, indicating a lower degree of similarity. We consider
two possibilities to explain this phenomena. Firstly, it could
be due to the activate exploration of the environment of the
motivated subjects, which is necessary to plan the subsequent
actions. Secondly, for the tools with a well-defined grip
and manipulating end, motivated subjects may examine the
manipulating end more often than the unmotivated subjects
ignoring the functional end. In addition, early saccades are
found present less similarity, which could be due to the center
bias as pointed out by [1].
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