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1. Introduction

Performance of interaction robots can be im-

proved significantly, if they can adapt the services to

the varying intrinsic, i.e. cognitive or emotional, state

of users. Especially robots for dementia or autism

threaphy may profit from such adaptations [1, 2, 3].

Estimation of user’s state can be obtained by ob-

serving the individual user’s behavioral or biological

responses. Such observations enable tailoring the con-

tent to specific users. On the other hand, it is also

possible to apply direct analysis of the stimuli in or-

der to design a broad-gauge scenario for the general

tendency of anticipated response.

In this respect, this study contrasts these the

user specific and broad-gauge approaches for estimat-

ing users’ state and provides a discussion on bound-

ing performance rates. To that end, we expose hu-

man subjects to emotionally stimulating visual con-

tent over a prolonged period and try to build a model

of the relation between the stimulus intensity and de-

cline in user’s responsiveness. We contrast this ap-

proach to direct estimation of emotional response, and

particularly arousal, from the stimuli.

2. Background

Emotions are short-term changes in mental state

arising as a reaction of human autonomic nervous sys-

tem to various stimuli. Autonomic nervous system

regulates other mostly unconscious functions of the

human body. Therefore, observation of such psycho-

logical responses enables evaluation of changes in the

emotional state.

2·1 Affect space

There is no de-facto categorization of emotions

due to their subjectivity and cultural dependence.

However, there are basically two fundamental ways

of categorizing, namely discrete and dimensional.

The most prevailing discrete model belongs to

Ekman, who defines six basic emotion categories as

Anger, Disgust, Fear, Joy, Sadness and Surprise [4].

Ekman claims these categories are universal among

all humans, which is highly debated.

As for dimensional approaches, the circumplex

model is one of the most popular [5]. It represents

emotions on two orthogonal axes, valence and arousal.

Valence rates impressions (i.e. unpleasant to pleas-

ant), whereas arousal rates intensity (i.e. passive to

active) [6, 7, 8]. Here, we adopt circumplex model

due to its continuous representation of emotions.

2·2 Physiological signals

Physiological signals are the readings taken from

bodily processes of human beings, e.g. heart-beat or

respiratory rate, skin conductance, or brain electrical

activity. Being controlled by autonomic nervous sys-

tem, they enable spontaneous observation of involun-

tary reactions to cognitive stimulation. In addition,

they are not sensitive to cultural and social differ-

ences [9, 10], which makes them objective markers

leading to an extensive deployment in affect analysis.

As physiological signal, we use electrodermal ac-

tivity (EDA) due to its ease of recording. EDA is cor-

related with the activity of eccrine glands, which are

found on nearly all skin locations and in highest con-

centration on hands [11, 12, 13]. From an anatomical

point, EDA reflects two basic electrical properties of

the skin: skin conductance level, also termed as tonic

level, and skin conductance response, also termed as

phasic response. EDA signal y can be decomposed as,

y = t+ r + ε, (1)

where r and t stand for phasic response and tonic

level, respectively, and ε is the noise. t changes slowly,

whereas r is considered as rapidly changing small

waves superimposed on t. Phasic response is sensitive

to a wide range of factors such as stimulus novelty,

intensity, or affective content. In this study, we focus

on intensity of affective content (i.e. arousal).

3. Related work

Several studies investigate the use of physiologi-

cal signals for estimating affect scores of stimuli. For

instance, EDA and Electroencephalography (EEG),

are often studied to estimate emotions induced by

visual or acoustic stimuli. For instance, Gerdes et

al. [14] studied brain activations against visual stimu-

lus, where Trochidis et al. [15] studied the link be-

tween acoustic stimulus and EDA, respiration rate

and blood volume pulse.

Physiological signals can be coupled with Neu-

ral Networks (NN) to predict an emotional state as

well. Chanel et al. [16] and McFarland et al. [17] use

NN to estimate subjects’ emotional states from EEG.

Kim et al [18] build a Deep NN (DNN) to predict af-

fective levels of visual stimuli from color, foreground,

background features. Peng et al. [19] develop NN to

estimate affect levels of also acoustic stimuli.

In addition, EEG [20] and fNIRS [21] are used

in interaction robotics to estimate user’s attention



and/or stimulate his engagement or estimate several

cognitive or affective states.

4. Experimental procedure
We adopt a discrete stimulus paradigm and

present emotionally significant visual stimuli as a side

show. Four subjects, one female and three male, aged

between 21 and 37, participate in the experiments.

The stimuli (i.e. images) are selected from the

Open Affective Standardized Image Set (OASIS),

which consists of 900 images, labeled for valence and

arousal by over 100 annotators. 200 images with mild

valence and arousal are selected from OASIS to build

the slide show (see Fig. 1), such that each image is

displayed for 5 sec followed by a 5 sec reset period.

As the subject watches the slide show, EDA is logged

by two electrodes on the index and middle fingers’

distal phalanges of the non-dominant hand. By this

means, both the physiological signals and the affect

level are represented quantitatively on respective con-

tinuous scales.
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Fig.1 Distribution of valence and arousal labels
for OASIS. The 200 images used the exper-
iment are presented with solid circles.

5. Estimation of arousal accounting
for responsiveness

In order to interpret EDA, a number of markers

are used such as latency, amplitude, rise time etc [12].

For estimating emotional response, the best marker

is suggested to be the amplitude of peaks in r [22].

Therefore, as a first step, the EDA signal is decom-

posed to obtain r. For obtaining the terms in Eq. 1,

we use cvxEDA, a convex optimization approach pro-

posed by Greco et al. [22], who model tonic compo-

nent as a linear combination of cubic spline functions

B, together with an offset with a linear term C:

t = Bl + Cd,

where l and d are the coefficient matrices. On the

other hand, r is modeled with a Bateman function,

h(τ) = (exp(−τ/τ0)− exp(−τ/τ1))u(τ), (2)

where u is the unit step. Eq.2 is represented with

an autoregressive moving average model in frequency

domain enabling convex optimization.

After decomposing y into its components, we fo-

cus on the amplitude of the peaks P in r, which are

known to be sensitive to the arousal of stimuli [22].

We model the relation between P and the annotated

arousal levels A accounting for the time elapsed from

the start of user’s task as in Eq. 3. Namely, P is mod-

eled as a function of arousal score A and display time

τ of the stimulus. P is subject to an exponential rate

of decay with τ :

P (A, t) = A exp (ατ + β) + C, (3)

where α, β and C are the parameters to be calibrated.

6. Performance Tests and Metrics

In order to test whether the responsiveness in

EDA is attenuated according to the model in Eq. 3

(due to a possible fatigue etc), we adopt a reverse es-

timation strategy. That is, we assume that the model

in Eq. 3 works efficiently and we estimate an arousal

level A′ for each image, given the amplitude of peaks

P and the display time τ ,

A′ =
P − C

exp(ατ + β)
.

This reverse estimation strategy enables an objective

evaluation of performance. In other words, since the

arousal level A of the stimulus (i.e. image) is provided

as ground truth in OASIS, A′ can be compared to A

using one of the conventional metrics.

Sign agreement metric (SAGR) is the most com-

mon performance measure in affect analysis [23].

SAGR considers an estimation Θ̂ij as successful, if

its sign equals the sign of ground truth Θij . Namely,

SAGR =
1

n

n∑
i=1

δ(sign(Θ̂i), sign(Θi)), (4)

where δ is the Kronecker delta function. Obviously,

SAGR is a nonlinear metric. To have a better insight

into performance, we also present Root Mean Squared

Error (RMSE) values in performance evaluation.

7. Comparison to reference methods

We consider two reference methods for comparing

the proposed approach. Since sensation depends to

a large extend on personality, it is not uncommon

for human coders to have disagreements. Therefore,

for estimating the level of disagreement inherent in

the ground truth, we carry out a Monte Carlo (MC)

simulation in Sec. 7·1. In addition, we develop a NN

based estimator in Sec. 7·2 to provide a comparison

with a broad-gauge approach as described in Sec. 1.

7·1 Ecological agreement with MC simulation

Here we use directly the statistics provided with

the ground truth of OASIS. Namely, each image in

OASIS, Ii, is evaluated by Ni > 100 coders. Instead



of each label {Aij , j ∈ [1, Ni]}, OASIS provides mean,

µi, and standard deviation, σi for each image Ii.

The optimization procedure described in Sec. 5.,

considers µi as the true of arousal score of Ii. In

order to evaluate the disagreement reflected by σi, we

take a MC standpoint. Namely, we compare m pairs

of annotations sets, both randomly drawn from the

ground truth distribution, under the assumption that

the corresponding levels of arousal {Aij} for a given

image Ii come from a normal distribution such that

Aij ∼ N (µi, σ
2
i ). For each pair of annotation sets,

we compute the corresponding SAGR as in Eq. 4 and

average it over the m pairs, as well as RMSE.

7·2 Learning affect scores using NN

The second reference method uses a DNN archi-

tecture, which is a compositional model, building po-

tentially more complex information from primitives in

a layered manner. Although DNNs are used to esti-

mate affective content of a stimulus [14], [24], they

are trained with data from a large number of subjects

and thus are often not specific to users.

Convolutional NNs (CNN) have recently become

ubiquitous in many computer vision fields. In this

study, an existing image classification CNN named In-

ception, which is trained with 14 million images from

Imagenet database, is used as a basis for developing

a transfer learning architecture [25, 26]. Since our

emotional stimuli is visual, we consider Inception to

be a suitable starting point for adapting it to esti-

mate affect scores via transfer learning. Namely, the

final classification layer is replaced with a bunch of

new layers, which are trained with the images from

OASIS to estimate their arousal scores.

In particular, two convolutional layers are added

for extracting affective features. Subsequently, a flat-

ten layer is added to turn the multi-dimensional fea-

ture table into a column of features that are fed to a

fully connected (FC) layer followed by a dropout layer

that will randomly set 50% of the values to 0 so as

to prevent over-fitting. Finally, a last FC layer with

a one dimensional output is added with a sigmoid ac-

tivation function. This layer estimates the affective

score of an input image with a continuous value be-

tween [0,1]. This value is either rescaled to [1, 7] in

case of RMSE cost function or considered as positive

or negative, in case of SAGR cost function.

8. Evaluation of performance
For testing the proposed method, EDA signal is

divided into 3 minute long sections, corresponding to

batches of 18 images. For each image in a batch, the

amplitude of peaks P is computed using cvxEDA. A

subset of 9 images is randomly chosen and correspond-

ing P values are used to calibrate Eq. 3 by minimiz-

ing the squared error. Using the resulting {α, β, C},
the arousal score A′ of the remaining subset is esti-

mated. This random selection process is repeated 100

times for all batches and all subjects. The estima-

tion performance in represented in terms of the mean

of SAGR and RMSE in Table 1. Since most images

Table 1 Comparison of performance

SAGR (%) RMSE
MC-200 41.7± 0.01 2.21± 0.01
MC-900 43.6± 0.01 2.19± 0.01
CNN-200 55.5± 0.16 1.76± 0.10
CNN-900 62.6± 0.01 1.98± 0.04
Proposed 53.6± 0.01 2.5± 0.10

used in the experiment have mild arousal scores, i.e.

in [−2, 2], (see Fig. 1), even a small error in A′ may

change its sign and degrade the performance in terms

of SAGR easily. For this reason, RMSE is useful for

interpreting the error. Therefore, MC and CNN are

tested using (i) the 900 images in entire OASIS data

set (MC-900 and CNN-900) and (ii) the 200 images

which are used as visual stimuli in our experiments

(MC-200 and CNN-900), in order to reflect the im-

pact of arousal range of stimuli.

Table 1 shows that the ecological agreement is

virtually the same in different arousal ranges (MC-200

and MC-900) in terms of both SAGR and RMSE. This

is due to the high standard deviation of the ground

truth scores (i.e. some people are extremely sensitive

or insensitive to the same stimuli).

The effect of arousal range is obvious on CNN-

200. Although the mean SAGR (55.5) seems to im-

prove, it has a high standard deviation (0.16). Most

tests achieve around 40% and few tests achieve about

90%, which increase the mean performance mislead-

ingly, and prove the over-fitting issue. Therefore, also

the low RMSE (1.76) can be explained by the learning

of the input range rather than real affective features.

Thus, the higher SAGR and lower RMSE values are

misleading in interpreting performance of CNN-200.

The proposed method achieves an SAGR of

53.6% with a very small standard deviation, and es-

timates the person-specific arousal better and more

stably than CNN-200. The RMSE is quite high since

output range of Eq. 3 is not bounded. Therefore, it

estimates the sign of arousal score correctly more of-

ten but its amount is overestimated. However, since

affect analysis considers the correct estimation of sign

to be more important than absolute error, a higher

SAGR is desired rather than a lower RMSE.

In case of CNN-900, SAGR is found to be 62.6±
0.01 and RMSE is 1.98 ± 0.04. Obviously, larger

amount of training samples improve the performance

of CNN considerably. However, we consider it un-

fair to compare these values to the proposed method,

since our performance is evaluated using a small set

(200 images), but is one of the future research direc-

tions to diversify the affect range of the stimuli.

In addition, we searched for studies estimating



arousal scores of OASIS but we could not come across

any such studies. Actually, most studies use the im-

ages as stimuli and analyze their impact on various

physiological signals. In this sense, perhaps the most

relevant study to our is by Hu et al [27], who achieve

around 40% success rate using image features and of-

fer to integrate image tags to improve recognition of

affect qualities.

9. Conclusion
This study proposes a model for user responsive-

ness using EDA signal. Since there is no standard

metric or ground truth for responsiveness, we take a

reverse strategy and estimate arousal scores account-

ing for the decay in responsiveness. The proposed

approach is found to give a more stable estimations

of arousal score than CNN-200. In addition, although

CNN-900 has better performance rates, a direct com-

parison is not fair, since the input sets are different.

Therefore, as a future work, we suggest to (i) diver-

sity the affect range of the stimuli and (ii) embed the

model of responsiveness into an NN architecture.
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