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1 Introduction

1.1 Context

This internship is carried out in an academic context. The host organization is the Grad-
uate School of Natural Science and Technology of Okayama University. Particularly, the
Human Behavior Understanding laboratory, in which the internship is taking place, is part
of the Division of Industrial Innovation Sciences, in the Department of Computer Science.

Situated in the Okayama Prefecture within the Chugoku region of Honshu, Okayama
University stands as a highly regarded in Japan. Established in 1870, the university is home
to approximately 13,000 students, comprising 10,000 undergraduates and 3,000 postgrad-
uates. The institution’s motto is ”Creating and fostering higher knowledge and wisdom”.

Okayama University has a strong global engagement and welcomes between 700 and 800
international students every year. One of its important collaborative relationships involves
Université Grenoble Alpes. Over the past decade, this partnership has been facilitating
research-oriented internships for students from Grenoble.

Within the academic landscape, the Graduate School of Natural Science and Tech-
nology focuses on research in fundamental sciences such as global climate change, plant
photosynthesis or supernova neutrinos. The Division of Industrial Innovation Sciences
works especially on applied engineering in the field of computer science, robotics, material
sciences among others.

In the Department of Computer Science, the topics of research are the basic theory
and application of information technology, artificial intelligence and computer technology.
Human Behavior Understanding Lab’s focus is on studying and comprehending human
behavior. Dr Zeynep Yücel is the professor of the laboratory and is particularly interested
in human behavior in social contexts, and mechanisms of attention. For instance, recent
papers from doctoral students in the laboratory discuss collision avoidance during pedes-
trian group movements [6] and the addition of audio elements to enhance the memorisation
of visual stimuli in e-learning settings [18].

1.2 Motivation

As mentioned earlier, one of Dr Zeynep Yücel’s main topics of interest involves mechanisms
of attention. These mechanisms play indeed a crucial part in understanding how humans
behave. Lawrence M. Ward [19] defines attention this way:

”Attention refers to the process by which organisms select a subset of available
information upon which to focus for enhanced processing and integration.”

In particular, understanding and replicating human visual attention represents a whole
area of research. Analysing and being able to predict where people look when confronted
to a given visual stimulus also have possible industrial applications, for instance in de-
sign/advertising or in image compression.
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Different types of stimuli will not have the same effect on people’s gaze, because of
particularities in their attentional capture. For instance, the literature [17] shows that
people’s gaze behaves differently when they look at a tool than when they look at a similarly
shaped non-tool object. This study will revolve around visual attention when confronted
to images of simple objects, including tools: our aim is to take into account the specific
nature of tools in predictive technology for gaze behaviour. In this scope, rather than the
industrial applications mentioned above, applications related to human-robot interaction
are more relevant.

2 Background and related work

This section contains elements of previous works in domains related to this project.

2.1 Visual saliency

2.1.1 Where people look

Figure 1: Human eye anatomy.

The human eye (see Figure 1) perceives images by letting light go through the pupil
and be projected onto the retina (back of the eyeball), where light-sensitive cells, called
cones and rods convert the incoming light into electrical signals sent to the visual cortex
for further processing. Especially, cones are sensitive to visual detail, but are very sparsely
distributed on most of the retina. There is only a small part at the center, called fovea
and spanning less than 2° of the visual field, where they are actually over-represented: this
results in human only being able to have full acuity in this small area [7].

Therefore, we need to shift our gaze in order to capture what is in front of our eyes.
The process of deciding where we look depending on the stimuli in our visual field is what

4



Lawrence M. Ward refers to as visual attention orienting [19]. Humans successively stop
their gaze for a moment at different locations in the visual scene, which is referred to as
fixations. The position of these fixations is a topic that has been studied extensively by
the scientific community. A key concept in studying the properties of a visual scene which
influence human attention orienting is salience.

”Visual salience (or visual saliency) is the distinct subjective perceptual qual-
ity which makes some items in the world stand out from their neighbors and
immediately grab our attention.” [8]

The key component of visual salience is bottom-up, or stimulus-driven, which means
that the salience of an area basically corresponds to the extent to which this area differs
(according to different visual features such as the color, orientation, shape, depth, etc.)
from its surroundings in the visual scene.

Besides, this bottom-up contribution can be strongly modulated by a top-down, or user-
driven component, which means that the internal state of the subjects influences where
they look: for instance, if someone is searching for a specific object, their fixations are
more likely to occur near shapes similar to this object.

In order to depict salience in various areas of a visual scene in an intuitive manner,
saliency maps (see Figure 2) are used.

”The Saliency Map is a topographically arranged map that represents visual
saliency of a corresponding visual scene.” [16]

Figure 2: Example of saliency map for a given image stimulus.

2.1.2 Saliency prediction

For almost twenty years, researchers have been designing algorithms to establish saliency
maps. For a given input image, the goal is to create a heatmap having the same dimensions
and depicting the extent to which each pixel is salient. Early on, models were basically
sticking to the previously mentioned definition (2.1.1) and used hand engineered features
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to compute the saliency value at each pixel. For instance, they could use color contrast or
edge detection as components of their salience computation.

A fairly intuitive way of looking at the concept of saliency map is to think of it as
a probability density p(x, y|I) that is supposed to predict people’s fixations on a given
stimulus I, in a context of free-viewing (i.e. limited top-down component in visual salience).
Thus, it makes sense to refer to the previously mentioned algorithms as saliency prediction
models.

In order to evaluate these models, ground truth data are needed. For visual salience,
these ground truth data consist in real fixations measured by gaze tracking on several
subjects (see Figure 3).

In the remainder of this study, for a given stimulus, we will use the following terminol-
ogy:

• Ground truth fixation map refers to the binary matrix where each coefficient indicates
if a fixation was recorded at the corresponding pixel for at least one subject during
the gaze tracking experiment.

• Ground truth saliency map refers to the probability density obtained by applying a
Gaussian filter to the ground truth fixation map and normalizing the result.

• Saliency map prediction refers to the probability density outputted by a saliency
prediction model.

Figure 3: Evaluation of saliency prediction models.

Around 2014, saliency prediction has shifted from the classic models mentioned earlier
towards deep learning models. However, since gaze tracking is time-consuming, requires
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special equipment and must be carried out on a sufficient number of subjects, the cost
and difficulty to obtain a large amount of ground truth data make it really hard to create
high-performance deep learning models from scratch. Therefore, nowadays most models use
transfer learning. In other words, they mainly use preexisting image classification/semantic
segmentation models (usually based on ImageNet and trained over millions of data) as
backbones, keep their convolutional layers, which extract features likely to play a role in
visual salience, and add a few layers (fully-connected) on top of it to compute a salience
value at each pixel. This enables to attain high-performance without as much training
data since the main part of the model has already been trained in order to reach high-
performance in its original task. For example, in 2017, DeepGaze II [12] used the VGG-19
deep neural network trained to identify objects in images as its backbone (see Figure 4)
and achieved state-of-the-art performance.

Figure 4: DeepGaze II architecture: transfer learning from VGG19.

One point to note is that human gaze tends to be biased towards the centre of the
visual scene. It means that, for two identical stimuli appearing on an image, the one
close to the center will be more salient. Therefore, DeepGaze II and other models add
a prior stimulus-independent centerbias component on top of their raw prediction before
outputting their true saliency map prediction. This stimulus-independent centerbias com-
ponent is essentially a distribution in which the values are higher the closer a pixel is to
the center.

2.1.3 Benchmarking

In order to evaluate saliency prediction models and to compare them with each other, the
MIT Saliency Benchmark [9], which became the MIT/Tuebingen Saliency Benchmark [10]
in 2019, was introduced in 2012. It is used to measure prediction models’ performances over
a dataset containing ground truth fixation data for 300 images, collected on 39 subjects.
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Table 1: State of the art performances on the MIT/Tübingen Saliency Benchmark.

Name IG AUC sAUC NSS CC KL-Div SIM

Gold Standard (3.3) 1.3239 0.8982 2.8481
DeepGaze IIE [13] 1.0715 0.8829 0.7942 2.5265 0.8242 0.3474 0.6993

UNISAL [4] 0.9505 0.8772 0.7840 2.3689 0.7851 0.4149 0.6746

Since the benchmark is aimed at ranking the models, quantitative metrics are needed to
evaluate performances: in visual salience, 7 metrics are commonly used (table 1), some of
which have been created for this specific task such as Normalized Scanpath Saliency (NSS)
while others come from information theory like Kullback–Leibler divergence (KL-Div).

A metric is basically a function M calculating a value M [s(x, y|I);D] for an given
saliency map s(x, y|I) (obtained on a given stimulus I) and a given set of ground truth
fixation positions D = (x1, y1), ..., (xn, yn) (corresponding to this given stimulus I). The
value displayed in the benchmark for a given metric averages its value on all stimuli of the
evaluation dataset.

Because different metrics account for different properties and have different optimal
saliency map predictions [3], a model’s output can not be expected to yield best perfor-
mances in all metrics as it stands, and for a long time it was not considered relevant to
compare two models if they were not optimized for the same metrics.

However, in 2018, Kümmerer et al. [11] showed that it was possible to overcome this
issue by considering the raw output of a model as the predictive probability density and
applying transformations to obtain metric-specific versions of the saliency map prediction
before computing the metrics. It enables to have good models perform well in all metrics,
and makes it relevant to compare models according to any metric.

An interesting point to note is that Information Gain (IG) and Normalized Scanpath
Saliency (NSS) already evaluate saliency map predictions as predictive probability den-
sities, hence no transformation is needed before computing the metrics. Moreover, they
operate directly on the ground truth fixation map (see 2.1.2). Therefore, they are conve-
nient to use and have been popular recently. Thus, these are the metrics we will use the
most in the remainder of this study.

2.2 Tools

2.2.1 Attentional capture

The original idea of this project’s topic has been inspired by an article about human
attentional capture for tool images by Skiba and Snow [?].

Affordances of an object refer to the possible and relevant actions the user can perform
on this object. For example, a chair affords being sat on, a ball affords being held and
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being thrown, etc. When it comes to tools, their affordances consist of highly specific
motor routines and depend heavily on their function, which is tightly linked to the identity
of the object. For instance, a saw affords being grasped in a specific way and moved in
a back and forth manner, because it is the way it must be moved in order to fulfil its
function of sawing material. In other words, what defines a tool, rather than its shape,
is the recognition of its function through its shape, and this function implies the relevant
actions that can be performed on it.

For a straight-shaped tool with a clear separation between the head (part of the tool
affecting its environment) and the handle (part of the tool grasped by the user) such as
a knife, a hammer or a screwdriver, attentional capture is expected to be biased towards
either. According to the article [17], humans tend to orient their attention towards the
head of a tool in priority. The experiment presented in Figure 5 consists in displaying a
dot either to the right or left of a central stimulus: if the stimulus is a tool, the reaction
time turns out to be significantly higher when the dot is displayed near the handle. The
hypothesis formulated is that humans look at the head in priority, since it enables them to
quickly grasp the function of the tool, and thus establish its affordances.

Figure 5: Dot detection time for tools and veggie/fruit depending on the side where the
target appears.

With the terminology introduced in Section 2.1.1, when we look at a tool picture, a
top-down component is induced in the corresponding saliency map: the recognition of
its function contributes to orient our attention. Thus, we can expect existing saliency
prediction models not to perform optimally on this particular image type.

2.2.2 Classification

For this project, even if we restrict the scope to hand tools, it still covers a wide spectrum
of objects. The head/handle distinction established in the previous section does not always
exist or can be rather ambiguous. Moreover, we can not expect human attention to be
influenced in the same manner by every tool. Therefore, if we will eventually only consider
simple straight-shaped tools for this project, establishing a comprehensive and relevant
classification of tools would be an important step to deal with this study more in depth.
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This kind of classification for tools in particular does not really exist in the litera-
ture. However, there are taxonomies classifying the different ways of grasping objects
[5], [14].These classifications mostly divide grasp types between power and precision re-
quirements, with some modulations depending on the position of the hand (see Figure 6).
This could be a relevant idea for classifying tools because grasps are directly linked to the
affordances and function of an object.

Figure 6: Comprehensive Grasp Taxonomy which includes 33 grasp types.

3 Collecting gaze data

Since the core of this project consists in retraining a preexisting deep learning saliency map
prediction model in order to specialize it towards the type of image that we are interested
in, collecting gaze data for this type of image represents a crucial part.

3.1 Custom dataset

Saliency prediction models are mostly designed to predict saliency for natural, complex
stimuli, scenes directly corresponding to what humans can perceive at any time. For
instance, these stimuli can be urban landscape, people interacting or the inside of a room
(see Figure 7). Hence, the main datasets used in the field of saliency prediction are mostly
made up of this type of stimulus: MIT300 and MIT1003 [9] are respectively the most
used datasets to evaluate and to train prediction models. Both consist of fixation data for
natural indoor and outdoor scenes, complex stimuli in which numerous elements can be
noticed.

On the contrary, for the purpose of this project, we wanted to have access to fixation
data for simple stimuli, consisting of individual objects on a plain background. For the
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Figure 7: Images from the MIT1003 dataset.

most part, this object would be a hand tool.
Another commonly used dataset named CAT2000 [1] has an ”object” category contain-

ing fixation data for 100 stimuli similar to this characterisation, but few of these objects
are actually tools. Therefore, we picked 115 images (100 for training, 15 for testing) from
the Bank Of Standardized Stimuli (BOSS) [2], which is a dataset including high resolution
images of all sorts of objects on a plain white background (see Figure 8), and carried out
our own gaze tracking experiment to collect fixation data. Among the 115 selected stimuli,
60 are images of simple tools, 30 are images of non-tool but similarly shaped objects, and
25 are images of more ambiguous objects (either not clearly defined as tools, or not having
a clear head/handle separation).

Figure 8: Images from the BOSS dataset. (a) to (e) are simple tools, (g)/(h) are non-tool
objects, (f)/(i)/(j) are ambiguous objects.

A hundred images is very few for a deep learning training dataset, but, having car-
ried out fine-tuning tests using the ”object” category of CAT2000, it seems possible to
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have a significant influence on the metrics, even with only hundred images in the training
dataset. In addition, since collecting gaze data is quite time-consuming and requires a lot
of attention from the subjects, it seems difficult to gather much more data than that.

3.2 Method

The methodology used to collect data is largely inspired by MIT300 and MIT1003 [9].
The subject sits 50cm away from a 51cm wide screen (1920x1080 pixels), wearing a

Pupil Core eye tracking device (200Hz, 0.6° of gaze accuracy), with their head supported
by a chin-rest for more stability.

The 115 stimuli selected from the BOSS dataset are randomly divided into 5 blocks
of 25 images (15 for the last one) in order to enable the subject to have frequent breaks
and reset their attention. Each block begins with a calibration (9 point calibration) before
successively displaying 25 stimuli for 3 seconds each, with a 1.5 seconds interval between
two stimuli, during which a red cross is displayed in the center of the screen. The subject
are asked to freely look at the stimuli, and are told that there will be a memory test at
the end, in order to enhance their engagement in the task.

Figure 9: Gaze tracking experiment pipeline.

The recording software Pupil Capture stores data in a directory which is then read by
the software Pupil Player in order to export it as a list of gaze positions associated with
timestamps. Sometimes we need to manually adjust the calibration because the data are
shifted: it is fairly easy to detect because we know that the gaze is supposed to be on the
central red cross in between images.

We managed to get gaze data from 12 subjects, which is almost as many as the 15
subjects involved in MIT1003.

3.3 Data analysis

Once we get one subject’s gaze data as a list of positions with timestamps, we have to
process it to establish their fixations for each stimulus. Using the timestamps, we can
extract the gaze data corresponding to one stimulus and apply an naive yet effective algo-
rithm to compute fixations: we consider that there has been a fixation somewhere when
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gaze position stays for a long enough period in a small enough area [7] . Common values
for these temporal and spatial threshold are respectively 0.1 second and 1° of visual angle
(in our configuration, this corresponds to around 20 pixels). We discard the first fixation
since it usually stands right in the center because of the red cross cue displayed in between
stimuli.

Then, by considering the fixations of all subjects for a given stimulus, we can establish
its ground truth fixation map (see Section 2.1.2). To build the corresponding ground truth
saliency map (see Section 2.1.2, see Figure 10), we must determine the size of the Gaussian
filter we will apply. [9] mentions a cutoff frequency corresponding to 1° of visual angle,
thus we chose a filter with a cutoff frequency of 23 pixels, which is a little bit bigger than
1° of visual angle for our images, but accounts for potential uncertainty in the measure.

Figure 10: Ground truth saliency maps for stimuli in our custom dataset.

In addition to establishing ground truth fixation and saliency maps, an interesting con-
cept is the gold standard . This refers to a line in the MIT/Tuebingen Saliency Benchmark
(see Table 1) which does not correspond to an actual saliency prediction model, but to the
ability of the ground truth data itself to predict human fixations. Basically, for a given
metric and a given stimulus in the dataset, the gold standard value is calculated by leaving
one subject out of the computation of the ground truth saliency map and evaluating this
saliency map as a predictive probability density of the fixation of the subject left out. The
metric is computed once with each subject being left out, then the mean value represents
the gold standard of the metric for the given stimulus. Hence, in the benchmark, the gold
standard value of a metric corresponds to the mean of this value for all stimuli in the
MIT300 dataset.

For our custom dataset, it is possible to compute the gold standard value for both IG
and NSS metrics.
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Given a binary map of fixations QB, a saliency map P , and a centerbias baseline map
B (see Section 2.1.2),

IG(P,QB) =
1

N

∑
i

QB
i [log2(ϵ+ Pi)− log2(ϵ+Bi)], (1)

where i indexes the ith pixel, N is the total number of fixated pixels, ϵ is for regularization.
This metric measures the average information gain of the saliency map over the prior
centerbias baseline at fixated locations: a positive score in this metric means that the
saliency map predicts fixated locations better than the image-independent prior centerbias
distribution.

With the same notations, NSS is defined as

NSS(P,QB) =
1

N

∑
i

Pi ×QB
i

where N =
∑
i

QB
i and P =

P − µ(P )

σ(P )
. (2)

NSS measures the average normalized (zero mean, unit standard deviation) saliency
at fixated locations: it means that if actual fixations were distributed according to chance,
NSS value would be 0, and the higher the value, the more fixations are gathered in salient
area of the map P .

In the calculation of the gold standard for both IG and NSS, the binary map of
fixations QB includes the fixations of the subject being left out, while the saliency map P
is the ground truth saliency map made from the fixations of all other subjects.

The gold standard value can be interpreted as an indicator for the quality of collected
data: if low values would not necessarily be a sign of error in data capture and could be
due to specific features of the stimuli, high values show that the ground truth saliency
maps are meaningful since their predictive power is significant. Another way of looking at
these values is to consider them as potentially achievable values for predictive models. It
is sometimes referred to as a lower bound for the explainable information.

For our custom dataset, gold standard values (see Table 2) are relatively close to the
ones for MIT300: it makes us optimistic about the usability of our data to train a saliency
prediction model. However, we have to be careful with theses values: because of the small
sample size, we can not really interpret them quantitatively. For instance, even if we notice
that there is no big difference between the three kinds of stimuli included in our dataset,
no conclusion can be drawn.
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Table 2: Gold standard IG and NSS values on custom dataset compared to MIT300.

Set IG NSS

All stimuli 1.191 2.501
Simple tools 1.200 2.521

Non-tool objects 1.244 2.529
Ambiguous objects 1.100 2.413

MIT300 1.3239 2.8481

4 Model fine-tuning

4.1 DeepGaze IIE

As the basis for this project, we select the saliency prediction model DeepGaze IIE [13]
which achieves state-of-the-art performance in the MIT/Tuebingen Saliency Benchmark
(see Section 2.1.3) for almost all metrics. Moreover, Deepgaze IIE is implemented in
Python using the popular library PyTorch, which makes it relatively simple to get started
with it and to integrate our custom dataset in its training process.

This model is mostly based on the transfer learning architecture of its predecessor
DeepGaze II (see Figure 4): it uses convolutional layers from preexisting state-of-the-art
ImageNet models and applies a readout network on these layers. The key difference from
DeepGaze II is that DeepGaze IIE combines backbones from different models, whereas
DeepGaze II was selecting one classification model as its foundation. DeepGaze IIE lever-
ages complementarity between its backbones to achieve more accurate predictions (figure
11.

One feature of DeepGaze II which made it stand out from other models was that it
did not update the weights of its backbone model during training: only the added fully-
connected layers were trained. Since the backbone’s layers’ weights were already optimal
to extract image features, retraining them could hardly improve performances and might
have caused overfitting (the model ”memorising” the training dataset instead of learning
from it). DeepGaze IIE is trained in the same way: only the readout network applied on
top of the convolutional layers of the preexisting models is trained.

The core of the model’s training involves MIT1003, which is the most commonly used
training dataset for saliency prediction models. However, a thousand images is usually
not enough for training layers from scratch and reaching high performance. Therefore,
DeepGaze IIE’s readout network is pre-trained using the SALICON dataset [15].

This dataset contains saliency data for 10,000 stimuli, yet these data are not obtained
through the usual method which involves gaze tracking, rather, subjects are confronted
with a blurred image displayed on their screen, and they can move their mouse over the
image to see certain areas with high resolution. It basically emulates the process of atten-
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Figure 11: DeepGaze IIE architecture.

tion orienting using only a computer mouse, and the movements of the mouse have been
shown to be correlated to actual fixation patterns. Even if these data remain inferior to
traditionally obtained saliency dataset in terms of quality, this method greatly reduces the
difficulty and cost to collect ground truth saliency data which can still be effectively used
as pre-training data.

The pre-trained model then goes through a 10-fold cross-validation, using the MIT1003
dataset. It means that the 1000 images from MIT1003 are divided into 10 blocks of 100
images and the model is trained 10 times, every time using a different block of images as
validation data and the 9 other blocks as training data. At the end, of the training, the
10 resulting models are combined to create the final model, which is then tested over the
MIT300 dataset. This enables to use the whole dataset to test the model during training,
without reducing the amount of training data.

Figure 12: Example of saliency map prediction from DeepGaze IIE compared to its prede-
cessor.
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4.2 Hyperparameters

The crucial part in training a deep learning model, other than training data itself, is the
choice of hyperparameters. Here, the structure of the model is already established so
hyperparameters basically include the loss function, the learning rate, and the number of
epochs.

The loss function evaluates the performances of the model on the training data as the
training progresses. During training, the model’s weights are continuously updated to try
to minimize the loss function. For saliency prediction model, metrics used in the benchmark
are likely to be relevant training loss functions (with a sign modulation if necessary). Before
constituting our custom dataset, we carried out training experiments (see Figure 13) on
DeepGaze IIE with training data from the CAT2000 dataset with different training losses,
each one involving different common saliency map evaluation metrics. It turned out that
the general behaviour of the model did not change drastically depending on the metrics
used. That being said, it seems that using IG in the training loss improves the value of
every metric on the validation dataset almost as much as any other training loss.

Figure 13: Evolution of validation metrics during training depending on the training loss.

Therefore, we decided to use IG as the training loss for the rest of this project. Actually,
DeepGaze IIE was already trained using this metric as loss. Regarding the learning rate,
which represents the rate at which the weights are updated during training, the model was
originally trained with a learning rate starting at 0.001 and regularly divided by 10 after a
fixed number of epoch. Since we are only fine-tuning an already trained model, we chose a
learning rate of 0.0001 from the start. We tested a few learning rates around this value and
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it seems that it only changes the epoch at which the optimum is reached, not the actual
value of the optimum.

Then we carried out a 5-fold cross-validation on our custom dataset to check if the
chosen hyperparameters made the training efficient and to estimate after how many epochs
we should stop training to avoid overfitting (this phenomenon is visible when the evaluation
metrics stop improving on the validation data but the training loss continues to decrease).
For each fold, we record significant improvements for all metrics, especially between 10 and
15% for NSS, between 15 and 20% for IG, with best performances reached after around 40
epochs. Thus, it validates the hyperparameters.

4.3 Results

We fine-tuned DeepGaze IIE using the hyperparameters introduced in Section 4.2 and
obtained the following results for IG and NSS metrics.

Table 3: Influence of fine-tuning on the model’s performances on training set (100 stimuli).

DeepGazeIIE IG NSS

Original 1.432 2.307
fine-tuned 1.752 2.585

When computing the metrics on the dataset used for fine-tuning the model (see Table
3), it is not surprising to notice a drastic improvement (IG improved by 22%, NSS by
12%). However it is not necessarily a good news, since an overfitting model could result
in such a result: if it memorizes the training dataset, it is likely to perform extremely well
for stimuli inside the dataset and poorly for stimuli outside. Therefore, the most crucial
part is to evaluate our model on data it has not seen during training.

Table 4: Influence of fine-tuning on the model’s performances on testing set (15 stimuli).

DeepGazeIIE IG NSS

Original 1.356 2.271
fine-tuned 1.576 2.461

For stimuli from our custom dataset which were not involved in the fine-tuning (table
4), the model performs 16% better for IG and 8% better for NSS after fine-tuning. This
is a reassuring result, showing there is a good chance that our training actually improved
the model for the particular type of stimuli we are interested in. However, it is difficult to
draw conclusions from such restricted sample.
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Figure 14: Comparison of model output for a few stimuli from the testing set before and
after fine-tuning.
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Moreover, the qualitative aspect (see Figure 14) of saliency predictions slightly im-
proved, as it seems that the outputted saliency maps are more confident in fixation prob-
ability near the head on tool stimuli (the saliency value decreased in areas other than the
head), but it can still hardly be seen as a significant change. Thus, we can question what
improves the metrics. For instance, we could imagine that the fine-tuned model takes
better account of the white background, rather than the specificity of tools.

Table 5: Influence of fine-tuning on the model’s performances on a subset of CAT2000 (100
stimuli).

DeepGazeIIE IG NSS

Original 0.664 2.340
fine-tuned 0.462 2.079

Finally, we need to recompute the saliency metrics on data completely independent
from our custom dataset, closer to MIT datasets, in order to test regression (see Table 5).
It seems that the model’s performances for stimuli outside of the particular type we are
interested in have significantly dropped after fine-tuning. It is something that had to be
expected, since we wanted to specialize the model to some extent, but it is important to
note that.

5 Conclusion

To sum up the work exposed in this report, we reviewed the literature about key concepts
of attention and visual salience, before establishing a particularity of tools’ attentional
capture that we would like to take into account in visual saliency prediction. Then we
proposed a method to modulate the preexisting deep learning prediction model DeepGaze
IIE in order to tackle this issue.

We managed to create a custom dataset of ground truth saliency data for tool and
simple object stimuli. Metrics like gold standard IG and NSS tend to confirm the quality
and relevance of these fixation data, although the sample size is quite small. Also, the
contribution of tool head in attentional capture is noticeable on these saliency maps.

This dataset has been used to carry out fine-tuning on the state-of-the-art model in
visual saliency prediction, and its performance quantitatively improved for the type of
stimuli contained in our custom dataset. Yet, it remains unclear whether this improvement
comes from tool specificity better taken into account or any other distinctive feature of this
type of stimulus. It is possible that we have just slightly optimized the capture of some
small components of visual saliency for a precise stimuli type. Then maybe we should have
wandered a little bit further from the existing model than just fine-tuning it.

20



Another idea that was originally part of the topic was to add an intention component
when capturing subjects’ gaze data on tools (for instance, having them want to use the
tool), but it would have complicated a lot of things. It remains something that could be
studied someday. Finally, another possibility to deepen the study, and maybe get a better
grasp on the concept of priority in attentional capture, would be to take into account the
order of the fixations (notion of scanpath).

6 Work organization

Figure 15: Early estimation of project schedule.

Figure 16: Effective final schedule of the project.

As introduced in section 1.1, this internship was carried out in an academic context.
Thus, if the field of interest and the goal of the project were well defined, the outlines
contained some uncertainty in the precise way to tackle the problem.
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Figure 15 shows an estimated planning of the tasks involved in the project, established
early on in the internship. Then, Figure 16 corresponds to the actual scheduled followed.

For the most part, tasks were completed within a timeframe close to what was initially
estimated. A few parts were slowed down a little because of equipment availability con-
straints (or participant availability constraints for the data gathering part), while others
were simply more complex than expected. The main addition in the effective planning is
a specific period to get familiar with deep learning and PyTorch (which I used for the rest
of the project) before experimenting on actual saliency prediction related models. This
part was needed since my prior knowledge in this field was very limited. I had some issues
manipulating deep learning models at first because I was using my personal laptop with
no GPU but I had access to a more powerful computer after a few weeks.

If the necessity to carry out bibliography research throughout the course of the intern-
ship was planned, something I did not expect to be as prominent was the need to constantly
return to previously read papers after learning something new about the field.

7 Environmental and societal impact

7.1 Personal environmental impact

At the laboratory, my work merely involved the usage of my personal laptop for program-
ming and basic research as well as a more powerful computer with a GPU for the all the
deep learning model training and gaze tracking experiments. Therefore, these are the main
sources of electric consumption in my project.

According to the specifications of my laptop, its power should be around 65W. If used
40 hours a week, it represents a 2.6kWh consumption, which means 65kWh over the 25
weeks of the internship. On the other hand, I used the GPU-equipped PC (power around
700W) for around 50 hours, which represents 35kWh. These 100kWh are equivalent, for
Japanese production, to 48kg of emitted CO2.

Besides, the internship was entirely carried out at the laboratory and I used the bicycle
to go around Okayama, therefore the environmental cost of commuting was limited.

However, even though I was already in Japan for an exchange semester before the
internship began, it is impossible to overlook the fact that a flight from France to Japan
emits 1.5 tons of CO2 equivalent per passenger, which means 3 tons for the round trip. It
is huge, over the annual carbon limit of 2 tons of equivalent CO2 we are supposed not to
exceed in order to achieve carbon neutrality by 2050. Moreover, even if it is not included
in my personal carbon footprint, my family visiting me in Japan a few months ago add to
this already poor environmental impact. It made me realize that settling in this far away
is not ecologically sustainable unless we do not come back in Europe for a few years.

22



7.2 Global impact of the project

As an academic research project, this study does not really have immediate industrial
applications, especially as there is still a significant amount of uncertainty about the result
obtained. Therefore, it is quite tricky to assess both the environmental and societal impact
it could have.

Generally speaking, deep learning models are known to consume more resources during
the training phase than during the use phase (until they are deployed on a very large scale).
In the case of DeepGaze IIE, being made up of several state-of-the-art ImageNet backbones
makes it sizeable: it takes almost half a gigabyte to store all its weights. Depending on the
extent to which it is intended to be used, its usage consumption can become significant.

For potential applications of visual saliency prediction mentioned earlier such as mar-
keting and design, the model is likely to be used on an ad hoc basis. On the other hand,
we also mentioned possible applications in image compression: this would represent a more
frequent use case, but also contribute in decreasing the size of images on servers, repre-
senting a trade-off. Finally, for our modified version of the model, we previously stated
human-robot interaction as an application field, but it is still very vague and makes it
difficult to assess environmental impact.

For the time being, thus, it seems that the societal reflexion on potential applications of
the project is more relevant in this section. The aim of this project being to predict human
gaze movement when confronted to a precise type of visual stimulus (a tool picture), it
basically falls under behavior understanding, prediction and replication. Its purpose, apart
from providing insight about human visual attention and computer’s ability to quantify
and mimic it, is rather vague. We might consider that it could simply be applied to
improve saliency prediction performances within the applications mentioned earlier (design,
marketing, compression) on a type of stimulus which was not processed optimally until
then. Another possibility, which seems more appealing to me, could be to use it on a
medical level to detect potential attention anomalies among subjects. Also, if we were able
to add an intention parameter in saliency prediction as mentioned at the end of Section 5,
we could think of intention estimation technologies.

7.3 Okayama University policy

Okayama University implements basic yet essential measures, such as a strict waste sorting,
and states ”Building up a new paradigm for a sustainable world” as one of its purposes. It
stresses the need to raise environmental and societal awareness among students, on global
issues related to environment, energy issues, food supplies, economics, health, security and
education.
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8 Personal feedback

8.1 Working experience

At the end of my second year at Ensimag, I had the opportunity to spend two months
in an IT company as part of my Assistant Engineer internship. During this experience,
what was expected of me was clearly defined: I had to implement a solution to automate
the deployment of features on one of the company’s products. In other words, I had to
implement a solution to a specific need.

I really enjoyed that first experience and learned a lot, but when I started my third
year, I still did not really have any idea of what I wanted to do next. Academic research
was a subject that came up regularly in discussions with my friends; it was still something
very vague to me, but I was quite curious about it.

Ultimately, I am glad that I applied for this internship: it was a totally different
experience and working on a project whose outlines were not as precisely defined as for my
second year internship proved to be very instructive. On top of the technical knowledge I
was able to develop on concepts involved in the project, such as deep learning, computer
vision and gaze tracking, I had to learn to be proactive, test things out and draw conclusions
to guide the next steps.

Besides, being surrounded by people who work on more or less similar topics, explaining
your work to others and exchanging feedback, taking part in each other’s data-gathering
experiments, are all enriching aspects of academic research.

8.2 Personal experience

Before starting my internship at Okayama University, I had already been in Japan for
six months, spending an exchange semester at Kyoto University. There, I really enjoyed
Japanese culture, and the prospect to extend the experience while discovering a new facet
of Japan in a less touristic city was part of the reason that made me want to apply.

Being in Japan for a whole year, I have had the opportunity to spend a lot of time with
both Japanese and other international students: in Japan, university students typically join
a laboratory in their fourth year of their bachelor’s program (bachelor’s degrees last for four
years, and master’s degrees for two) to conduct research alongside their coursework, and
my laboratory had the particularity to frequently welcome international research students,
creating a good balance in my opinion. I also got the opportunity to frequently meet
Japanese students in the context of extracurricular activities. Culturally, this stay has
been an immensely valuable experience.

Also, living that far away from France and from my relatives for a whole year, in a
largely different environment with a completely different language, was something I was
experiencing for the first time, and although it was a little intimidating at the beginning,
I think that it helped me mature as a person to some extent.
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9 French abstract

Ce rapport rend compte du travail effectué dans le cadre d’un PFE en contexte académique,
à l’Université d’Okayama au Japon. Le laboratoire du Dr. Zeynep Yücel, au sein duquel ce
stage s’est déroulé, a pour objet d’étude la compréhension du comportement humain. En
particulier, mon sujet traite des mécanismes liés à l’attention visuelle chez l’être humain,
ainsi que des concepts et technologies utilisés pour la représenter et la prédire.

La notion de saillance (salience ou saliency en anglais) est un concept clé du sujet. Elle
désigne la mesure dans laquelle une chose est susceptible de retenir l’attention par rapport
aux autres choses présentes dans son environnement. Lorsque l’on parle de saillance visuelle
d’une zone au sein d’une image, on cherche à quantifier sa faculté à attirer notre regard.
Une saliency map est une représentation topographique de la saillance des différentes zones
d’une image, souvent interprétée comme une densité de probabilité supposée prédire les
zones fixées par l’être humain. Aujourd’hui, certains modèles d’apprentissage profond sont
capables de prédire une saliency map pour une image en entrée de façon relativement
précise.

Skiba et Snow [17] introduisent l’idée que la capture attentionnelle des objets fonction-
nels, tels que les outils, serait davantage influencée par la reconnaissance de leur fonction
que par leurs simples caractéristiques visuelles. Cela orienterait notre regard en priorité
vers la tête d’un outil plutôt que vers sa poignée. L’objectif du projet est la prise en compte
de cette spécificité des outils dans la prédiction de saliency maps.

Afin de réentrâıner un modèle existant sur le type de stimuli qui nous intéresse, nous
avons collecté les données de regard de 12 personnes pour 115 images, mettant chacune en
scène un objet central (la plupart du temps un outil) sur fond uni. Nous avons utilisé des
indicateurs usuels d’évaluation de saliency map afin de confirmer la qualité et la pertinence
de notre dataset. Sur les saliency maps empiriques, établies à l’aide des données récoltées,
on constate effectivement une prédominance de la tête sur la poignée dans le cas des images
d’outils.

Ce dataset a été utilisé pour réentrâıner le modèle DeepGaze IIE, qui réalise à ce
jour l’état de l’art pour la prédiction de saliency maps. Les performances du modèle ont
augmenté pour le type de stimuli d’intérêt (simples images d’objets) selon les indicateurs
généralement utilisés en saillance visuelle pour les analyses comparatives. Cependant,
nous n’avons pas la certitude que cette amélioration soit due à la nature particulière des
objets fonctionnels, elle pourrait par exemple être liée à une meilleure prise en compte des
arrière-plans unis, qui sont omniprésents dans le dataset d’entrâınement.

Une pistes intéressante mentionnée au cours de l’étude, mais n’ayant finalement pas été
traitée, serait de prendre en compte l’intention du sujet qui regarde l’image d’outil dans la
prédiction de saliency map.
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