
Proposition

Suppose that a certain quantitative random variable belonging to a Normal distribution has a mean of m and
a standard deviation of σ. Further, assume that after log-transforming this variable, the resulting distribution
has a mean and standard deviation of m̂ and σ̂, respectively.

Then, there exist the following relations between these pairs,

m = ln

 m̂√
σ̂2

m̂2 + 1

 (1)

σ2 = ln

(
σ̂2

m̂2
+ 1

)
. (2)

Proof

Let Y be a normal random variable with mean m and variance σ2. In other words, by standard notation
Y ∼ N (m,σ2). The probability density function (pdf) of Y is then,

g(y) =
1√

2πσ2
exp

(
− (y −m)

2

2σ2

)
. (3)

Provided that a random variable X is related to Y with the following equation,

X = exp(Y ). (4)

then it said to have a log-normal distribution.
We denote the expected value and variance of a log-normally distributed random variable X by E[X] and

V[X], respectively. According to the preposition, E[X] = m̂ and V[X] = σ̂2.
In order to solve for E[X] and V[X] in terms of m and σ, we make use of the following facts,

• E[X] =
∫
R xf(x)dx

• V[X] = E[X2]− E[X]2

where R is the set of real numbers, f(x) is the pdf of random variable X.

Deriving pdf of X

We know that Y admits a pdf as shown in Eq. 3. If Y and X are related with Eq. 4, then

f(x) = g(y)
dy

dx
. (5)

Using Eq. 4, the derivative terms can be related with the following

dy =
1

x
dx. (6)

Replacing y and dy in Eq. 5 with proper terms using Eq. 6, we obtain

f(x) = g (ln(x))
1

x
,

which is equivalent to

f(x) =
1√

2πσ2
exp

(
− (ln(x)−m)

2

2σ2

)
1

x
. (7)
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Deriving expected value of X

To find E[X], we need to evaluate the following definite integral,

E[X] =

∫
R
xf(x)dx,

by replacing f(x) with Eq. 7.
First of all, although the limits of the integral are ±∞ for the general case, for log-normal random

variables, they are shrunk down to 0 and ∞ due to the non-negativity of the random variable. Changing the
limits accordingly and replacing f(x) with Eq. 7, we obtain

E[X] =

∫ ∞
0

x
1√

2πσ2
exp

(
− (ln(x)−m)

2

2σ2

)
1

x
dx. (8)

We apply a change of variables such that

t =
ln(x)−m

σ
. (9)

Here, the derivative terms have the following relation

dt =
1

σx
dx. (10)

By using Eq. 9, we can see that
x = exp(σt+m). (11)

Replacing Eq. 11 in Eq. 10, we obtain
σ exp(σt+m)dt = dx.

Moreover, from Eq. 9, we know that x = 0 corresponds to t = −∞ and x = ∞ corresponds to t = ∞.
Arranging the limits according to this change of variables, Eq. 8 becomes

E[X] =

∫ ∞
−∞

1√
2πσ2

exp

(
−1

2
t2
)
σ exp (σt+m)dt.

This expression is equivalent to,

E[X] =

∫ ∞
−∞

1√
2π

exp

(
−1

2
(t2 − 2σt+ σ2)

)
exp

(
m+

σ2

2

)
dt.

Bringing the terms independent of t out of the integral and carrying out simplification on fractional terms,
we obtain

E[X] = exp

(
m+

σ2

2

)
1√
2π

∫ ∞
−∞

exp

(
−1

2
(t− σt)2

)
dt.

Here, it is easy to see that
1√
2π

∫ ∞
−∞

exp

(
−1

2
(t− σt)2

)
dt.

defines the integral of the pdf of a normally distributed random variable with a mean of σ and unit variance.
Since this integral attains a value of 1, E[X] is reduced to

E[X] = exp

(
m+

σ2

2

)
. (12)

Thus,

m̂ = exp

(
m+

σ2

2

)
. (13)
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Deriving variance of X

Now, we exploit the relation between variance and expected value of any random variable X, given by the
following identity,

V[X] = E[X2]− E[X]2. (14)

Since we have already computed E[X] in the previous step, this time we need to compute E[X2]. To that
end, we need to take the following integral

E[X2] =

∫
R
x2f(x)dx.

Arranging the limits and replacing f(x) with Eq. 7, we obtain

E[X2] =

∫ ∞
0

x2
1√

2πσ2
exp

(
− (ln(x)−m)

2

2σ2

)
1

x
dx. (15)

Simplifying the quadratic terms of x

E[X2] =

∫ ∞
0

1√
2πσ2

exp

(
− (ln(x)−m)

2

2σ2

)
xdx. (16)

We apply again the change of variables given in Eq.9. This time, we treat Eq.9 so as to achieve a term of
xdx. From Eq. 9, we know that

σxdt = dx.

Multiplying both sides with x
σx2dt = xdx. (17)

Writing x in terms of t using Eq. 9, we get

x = exp (tσ +m) .

Thus, the relation between the derivative terms given in Eq. 17 is

σ exp (2tσ + 2m)dt = xdx.

Replacing this term in Eq. 16 and arranging the limits, we obtain

E[X2] =

∫ ∞
−∞

1√
2πσ2

exp

(
− (ln(x)−m)

2

2σ2

)
dt.

Replacing x with t in Eq. 15, employing the relation between the derivative terms given in Eq. 10, and
arranging the limits, we get

E[X2] =

∫ ∞
−∞

1√
2πσ2

σ exp (2tσ + 2m) exp

(
−1

2
t2
)
dt.

Inside the integral, we multiply and divide by the term exp(2σ2 + 2m), and obtain

E[X2] =

∫ ∞
−∞

1√
2π

exp

(
−1

2

(
t2 − 4σt+ 4σ2

))
exp

(
2σ2 + 2m

)
dt.

Bringing the terms independent of t out of the integral, we obtain

E[X2] = exp
(
2σ2 + 2m

) 1√
2πσ2

∫ ∞
−∞

σ exp

(
−1

2

(
t2 − 4σt+ 4σ2

))
dt.

Here, it is easy to see that
1√

2πσ2

∫ ∞
−∞

σ exp

(
−1

2

(
t2 − 4σt+ 4σ2

))
dt.
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defines the integral of the pdf of a normally distributed random variable with a mean of 2σ and unit variance.
Since this integral attains a value of 1, E[X2] is reduced to

E[X2] = exp
(
2σ2 + 2m

)
.

On the other hand, the term E[X]2 in Eq. 14, can easily found by using Eq. 12.

E[X]2 =

(
exp

(
m+

σ2

2

))2

= exp
(
2m+ σ2

)
Finally, replacing the explicit expressions of E[X2] and E[X]2 in Eq. 14, we get

V[X] = exp
(
2σ2 + 2m

)
− exp

(
2m+ σ2

)
.

Since V[X] = σ̂2, we can write,

σ̂ =
√

exp (2σ2 + 2m)− exp (2m+ σ2). (18)

Deriving statistics of Y in terms of E[X] and V[X]

Note that the above proof gives the expressions of mean and variance of log-normally distributed random
variable X, i.e. m̂ and σ̂2, in terms of the statistics of the normally distributed random variable Y , i.e. m
and σ. In what follows, we will establish the opposite relations given in Eq. 2 of the manuscript. Namely we
will express m and σ in terms of m̂ and σ̂2.

Let us start from Eq. 18, and take its square

σ̂2 = exp
(
2σ2 + 2m

)
− exp

(
2m+ σ2

)
. (19)

By arranging the exponential terms and taking the logarithm of Eq. 19, we get

ln (̂σ2) = ln
(
exp

(
σ2 + 2m

) [
exp

(
σ2
)

+ 1
])
.

This is equivalent to
ln (̂σ2) = σ2 + 2m+ ln

[
exp(σ2)− 1

]
(20)

We also take the logarithm of Eq. 13 and write m in terms of m̂ and σ as follows

m = ln(̂m)− σ2

2
(21)

Here, we can easily see that
σ2 + 2m = 2 ln(̂m) (22)

Replacing the σ2 + 2m term on the right hand side of Eq. 20 with the one given by Eq. 22, we obtain

ln σ̂2 = 2 ln (̂m) + ln
[
exp(σ2)− 1

]
(23)

Collecting the terms relating the statistics of X (i.e. m̂ and σ̂2) and the statistics of Y (i.e. m and σ) on
different sides, we obtain

ln
[
exp(σ2)− 1

]
= ln σ̂2 − 2 ln (̂m)

Using the properties of logarithm, this reduces to

ln
[
exp(σ2)− 1

]
= ln

(
σ̂2

m̂2

)
Taking exponential of both sides and moving the constant term (1) to right hand side, we get

exp(σ2) =
σ̂2

m̂2
+ 1
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Taking the logarithm,

σ2 = ln

(
σ̂2

m̂2
+ 1

)
(24)

Note that this completes the proof of Eq. 2.
Let us prove also Eq.1. For this purpose, let us replace σ2 found in Eq. 24 in Eq. 21. This gives us

m = ln(̂m)− 1

2
ln

(
σ̂2

m̂2
+ 1

)
Carrying the coefficient (−12 ) of the logarithmic term into the parenthesis as a square root, we get

m = ln(̂m)− ln

(√
σ̂2

m̂2
+ 1

)

Using the properties of logarithm, we can organize this equation as

m = ln

 m̂√
σ̂2

m̂2 + 1


This completes the proof of Eq.1.
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