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4 2 MOTIVATION AND OBJECTIVES

1 Context

This internship takes place in an academic context. The home structure is the Graduate
School of Natural Science and Technology of Okayama University. In particular, the host
laboratory is part of the Division of Industrial Innovation Sciences, in the Department of
Computer Science.

Okayama University is a well-ranked university in Japan located in Okayama Prefecture,
in the Ch	ugoku region of the main island of Honsh	u. The school was founded in 1870 and
welcomes around 14000 students (10000 undergraduates, 3000 postgraduates and 1000
doctoral students). It's motto is � Creating and fostering higher knowledge and wisdom �.

Okayama University and Université Grenoble Alpes have a long history of exchange that
has been reactivated for the past three years with around a dozen of Grenoble students
performing research oriented internship in Okayama every year. As a University Research
Administrator, Dr Bernard Chenevier's mission is to develop research collaborations at
the international level and, for this purpose, he works to strengthen the bond between
these two universities. It is in this context that internship topics are proposed to French
students.

The Graduate School of Natural Science and Technology was originally established in
April 1987. It focuses on research in fundamental sciences such as global climate change,
plant photosynthesis or supernova neutrinos. The Division of Industrial Innovation Sciences
works especially on applied engineering in the �eld of computer science, robotics, material
sciences among others.

In the Department of Computer Science, the topics of research are the basic theory
and application of information technology, arti�cial intelligence and computer technology.
Examples of research projects include the development of a visualization tool for a processor
or human tracking algorithm by means of attention control. Dr Akito Monden is the
professor of the Theory of Programming and Arti�cial Intelligence laboratory, where this
internship takes place and Dr Zeynep Yücel is the assistant professor in the same laboratory.

2 Motivation and objectives

Dr Zeynep Yücel has been working for a few years on modeling crowd movements [1][2][3].
This study is an extension to their work in the last couple of years.

The motivations behind constructing crowd or pedestrian motion models are numerous:
testing architectural designs for an evacuation process, designing accurate crowd models
for movies or video games, etc., and it is a very active �eld of research as it is requisite in
recent domains such as autonomous driving.

One of the main challenges behind pedestrian motion modelling is to take into ac-
count the social relation and interactions between social pedestrian groups. Indeed, [3] has
demonstrated that the motion patterns of individuals performing gestures (i.e. physical
contact, mutual gaze, conversation and arm gestures) are signi�cantly di�erent from the
ones of not-interacting individuals. In addition, [4] proved that pedestrian pairs, which are
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in di�erent social relations, have di�erent motion characteristics. Both [3] and [4] rely on
human annotations to model the di�erent motion patterns and evaluate their performance.

Therefore, this project aims to develop methods to automatize the recognition and
classi�cation process of pedestrians'. Namely, our goals are twofold: (i) recognition of
social relations and (ii) detection of gestures. We study each of these problems in Section 4
and Section 5. For recognition of social relations we devise a probabilistic method with a
Bayesian approach, whereas for detecting the gestures of interaction we propose a method
inspired from audio signal processing.

Thanks to the methods proposed in Sec 4 and 5, instead of relying on human referees
to decide whether or not a set of pedestrians are presumably in a given relationship and
interacting (performing gestures) in a given video, this decision can be made automatically,
which enables real time processing and reaction of social interaction robots.

3 Background and related work

This section will detail the previous works that have been done in the di�erent domains
that this project involves.

3.1 Crowd modeling

When modeling the crowd, two kinds of models are generally in use:

Macroscopic models: This kind of models [5, 6, 7] is used to describe often high density
crowds. They are generally based on dynamic �uid representation of the people
and study the density and �ow of pedestrians in simulated environments (see Figure
1a). Their applications include planing evacuation processes or large scale events for
avoiding stampedes by identifying high density areas.

Microscopic models: These models, where the most prominent one is Social Force Model [8],
describe pedestrians as particles with a certain position and velocity and subject to
a variety of forces: attractive forces from other particles of the same group, repul-
sive forces from obstacles like walls or other pedestrians, etc (see Figure 1b). They
are used in modeling the interaction at a smaller scale and can be used to develop
autonomous agents such as companion robots or smart wheelchairs.

This study focuses on motion of pedestrians in small groups. The most popular model
for this topic is the Social Force model (SFM). Many studies based their models on the
original SFM and extended it to enhance the simulated behaviors of pedestrians to prevent
sudden changes in velocity or direction [11, 12].

Most recently, data driven techniques such as neural networks have been used to com-
pute socially acceptable trajectories [13, 14]. Mainly, networks are trained on real trajectory
data to generate missing portions considering the beginning of a trajectory.
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(a) (b)

Figure 1: (1a) Macroscopic [9] and (1b) microscopic [10] crowd models illustrations.

3.2 Gait analysis

Motion patterns of pedestrians are signi�cantly a�ected by gait. Length and frequency of
steps of walking individuals have been particularly studied to inventory empirical values
for panels of people in various environments.

In [15], Hui et al. manually measured the gait parameters of pedestrians to study their
correlation with gender and age. A particularly vast number of studies have investigated
the impact of age on gait parameters [16, 17, 18, 19, 20]. The recurring �nding is that
older people exhibit slower walking speed and shorter step length than younger ones. Sun
et al. analysed the impact of surface slope on human gait and discovered that pedestrians'
step length decrease during ramp descent [21].

The uniqueness of human gait rythme has been established in various studies [22,
23]. This speci�city was found to be a discriminating feature to build pedestrian detec-
tors [24][25] or di�erentiate pedestrians from other moving vehicles [23]. Moreover, gait
analysis has also been used as a way to identify people's gender or age range [26][27].

Few studies present automatized methods to measure the gait parameters of pedes-
trians. In [28], Niyogi et al. detect the characteristic braided pattern of walking in the
spatiotemporal volume by computing an autocorrelation sequence of trajectory values (the
inverse Fourier transform of the magnitude of the Fourier transform) and �nding the peak
in this sequence. Saunier et al. [29] and Hediyeh et al. [30] compute power spectra of speed
pro�les to extract gait frequency of pedestrians.

3.3 Action recognition

The problem of action detection and recognition has been addressed in many ways as it is at
the center of various other topics such as video surveillance or human-computer interaction.
Initial methods used dense trajectories, where feature points are tracked across frames and
descriptors such as Fisher Vectors are computed to capture the motion information of the
subjects in the video [31].

More recently, machine learning algorithms, such as neural networks, have been widely
applied to this task. Skeleton-based action recognition using Recurrent Neural Networks
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Figure 2: Density map of the environment.

(RNNs) [32, 33] or their extension using Long Short-Term Memory (LSTMs) units [34] has
shown signi�cant improvements over the previous methods.

Recently introduced Graph Convolutional Networks (GCNs) [35] generalize the convo-
lution operation on 1D and 2D arrays to graph data structure. In [36], Yan et al. propose
a Spatio-Temporal Graph Convolutional Network (STGCN) to classify actions in videos.
Their study relies on building a graph composed of the skeletons of a given person at
multiple successive frames, each joint being linked to its detection on the previous and
following frame. Their classi�er takes this graph as input to perform action classi�cation.

4 Recognition of social relations

This section focuses on the impact of social relations on pedestrian motion. The de�nition
of the relationships is based on [37], where Bugental proposes a domain-based approach
and divides social life into �ve non-overlapping domains as attachment (e.g. family),
hierarchical power, mating (e.g. couple), reciprocity (e.g. friends) and coalitional (e.g.
colleagues).

In this study, hierarchical relation is eliminated, since it does not apply to the full
extent to pedestrians in a public space. For this simpli�ed case, we contain ourselves to
the two most distinct social relations as pointed by [4]: mating and coalitional.

4.1 Dataset

The dataset used for studying the impact of social relations on walking patterns was
introduced in [38]. This dataset was obtained by setting up a tracking environment in the
�ATC� shopping center in Osaka. The system was composed of multiple 3D range sensors,
covering an area of about 900 m2. It is composed of a set of trajectory data �les containing
the coordinates of the pedestrians, their height as well as their velocities.

For annotation purposes, the tracking area was recorded with 16 cameras. A subset of
the footage was annotated by human coders to identify the pedestrian social groups and
relation (apparent purpose of the visit, apparent gender, apparent relation, apparent age)
for 988 dyads. The relation between dyads is distributed as follows: 358 coalitional, 96
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Figure 3: Schema of the observables depicted on a single dyad.

mating, 216 attachment and 318 reciprocal.

4.2 Observables and empirical distributions

The raw trajectory �les are exposed to a preprocessing operation. Namely, the data points,
which are not uniform over time, are averaged over intervals of 0.5 s to obtain uniform
sampling, and to decrease the e�ect of measurement noise and pedestrian gait. Figure 2
shows the cumulative density map of the environment.

From the preprocessed data, a certain number of observables are computed for each
dyad at each sampling instant according to the group reference frame. Namely, we adopt a
dynamic reference frame such that its x-axis is always aligned with the direction of motion.
This enables eliminating the e�ect of maneuvering for taking curves or avoiding obstacles.

The observables, which are illustrated on Figure 3, are de�ned explicitly as follows:

1. Interpersonal distance, δij, is de�ned as the distance between the peers.

2. Group velocity, vg, is the magnitude of the average instantaneous velocities of the
peers,

vg(i,j) =

∣∣∣∣~vi + ~vj
2

∣∣∣∣ .
3. Absolute di�erence of velocity vectors, ωij, is de�ned as the magnitude of the di�er-

ence vector,
ωij = |~vi − ~vj| .

4. Height di�erence, is
∆η = |ηi − ηj|,

where ηi and ηj stand for the height of the pedestrians pi and pj, respectively.
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Figure 4: Empirical distributions of (4a) δ, (4b) vg, (4c) ω and (4d) ∆η, of dyads in
coalitional (C, blue) and mating (M, red) relation.
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After computing the observables, their probability density distributions are approxi-
mated with cumulative histograms (see Figure 4). It is clear that the distributions are
signi�cantly di�erent. Moreover, an ANOVA analysis con�rmed that the observables δ,
vg, ω and ∆η have a p-value smaller than 10−4. Considering that in the literature ([7]), a
value lower than 0.05 is generally admitted to demonstrate statistical signi�cance, it can be
concluded that coalitional relation and mating relation are considerably di�erent in terms
of the observables.

4.3 Bayesian model

Following the �ndings of [4], the idea is to build a predictive model based on the a pri-
ori knowledge of the observable distributions to classify dyads into their apparent social
relations as coalitional or mating.

Let Σ(t) = {δ, vg, ω,∆η} be the set of observables at time t. The probability that Σ(t)
comes from a group in social relation of r, where r ∈ {C,M} can be computed as

Pt(r|Σ) =
Pt(Σ|r)Pt(r)

Pt(Σ)
. (1)

The term Pt(Σ|r) can be decomposed as the product of probabilities of each single
observable, provided that their independence can be assumed. To verify this hypothesis,
the Jaccard distance is computed.

Let Θ and ∆ be two random variables. Their Jaccard distance is de�ned as

D(Θ,∆) =
H(Θ,∆)− I(Θ,∆)

H(Θ,∆)
, (2)

where H(Θ,∆) and I(Θ,∆) are the joint entropy and mutual information of the variables,
respectively, and are described as

H(Θ,∆) = −
∑
i,j

p(θi, δj) log2(p(θi, δj)), (3)

I(Θ,∆) =
∑
i,j

p(θi, δj) log2

(
p(θi, δj)

p(θi)p(δj)

)
. (4)

The distance D(Θ,∆) should be 1 for uncorrelated variables and closer to 0 for corre-
lated ones.

Table 1 shows Jaccard distance values between pairs of observables for two sample
subsets of dyads coming from coalitional and mating relations. The results being always
higher than 0.94, the independence hypothesis can be considered as reasonable.

Therefore, the term Pt(Σ|r) can be decomposed as follows,

Pt(Σ|r) = Pt(δ|r)Pt(vg|r)Pt(ω|r)Pt(∆η|r). (5)
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Table 1: Jaccard distance between observables for subsets of (1a) coalitional and (1b)
mating relations.

(a)

vg ω δ ∆η

vg 0 0.98 0.99 0.98
ω - 0 0.98 0.97
δ - - 0 0.98
∆η - - - 0

(b)

vg ω δ ∆η

vg 0 0.96 0.97 0.96
ω - 0 0.95 0.94
δ - - 0 0.96
∆η - - - 0

Without any prior belief, the probability of being in a C or M relation are initialized
with unbiased equal probabilities,

P0(r) =
(
0.5 0.5

)
. (6)

As time elapses, we propose updating the prior as in Equation 7, where the parameter α
de�nes the rate of update,

Pt(r) = αP0(r) + (1− α)Pt−1(r). (7)

In this manner, Pt(C) and Pt(M) are computed at every time instant t and the relation
associated with the larger probability is considered as the estimated relation at that instant.
For quantifying estimation performance, the mean rate of correct detections over all time
instants for all dyads are reported.

4.4 Results

Table 2: Detection performance for varying α (in %).

α C M Total

0 88.5± 2.1 73.4± 5.0 85.3
0.5 88.1± 2.1 79.1± 3.8 87.2
1 87.1± 2.3 81.3± 4.1 86.5

In practice, 30% of the pairs are randomly chosen and their trajectories are used to
build the probability density functions in Eq. 5. The remaining 70% are used to test the
estimation method. Moreover, repeating this validation procedure 20 times, the mean and
standard deviations of performance values are computed to investigate the sensitivity (i.e.
dependence) of the observables on training set. By randomly picking 30% of the entire
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samples and repeating this procedure 20 times, the probability that a particular sample is
not used for training falls below 10−3 .

From the recognition rates presented in Table 2, it is observed that coalitional relation
is recognized with a somewhat higher rate for all values of α, which could be due to the
imbalance of samples in the dataset as given in Section 4.1. Moreover, although the overall
performance rate for α = 1 seems sligtly lower than that of α = 0, taking a �xed and
unbiased prior is regarded to perform better in the sense that it yields a more balanced
estimation performance for the social relations. In addition, due to the very low standard
deviation values, the e�ect of random shu�ing is regarded to be minute, which suggests
that the observables are stable across samples and the method is resilient to changes in
training set.

It is important to note that the algorithm relies on previous annotations made by
coders for the training step (construction of the distributions). Yet it proves to be able to
generalize the classi�cation process to new data.

4.5 Alternative methods

The proposed method detailed in Section 4 considers each set of observations Σ(t) =
{δ, vg, ω,∆η} collected at every sampling instant t and yields a probability of being in a C
or M relation. In that sense, it enables a local decision, which may gradually evolve.

In this section, we describe a few alternative methods, which work on the entire set of
observations for all time instants providing global decisions. In other words, for a particular
dyad of interest, we obtain distributions of each observable at the end of its trajectory and
compare them to the corresponding representative distributions of C and M relations. At
this point, we need to measure the distance between each pair of probability distribution
on a statistical manifold. Therefore, it is important to de�ne proper distance metrics.

In what follows, we de�ne the metrics that we considered. Let two discrete probability
distributions be denoted with P and Q,

1. Kullback-Leibler (KL) divergence from P to Q is de�ned as,

DKL(P ||Q) =
∑
i

P (i) log
P (i)

Q(i)
. (8)

Equation 8 can be interpreted as the amount of information lost when Q is used to
approximate P . Obviously, DKL(P ||Q) 6= DKL(Q||P ). Therefore, in order to have
a fair comparison we compute the divergence from the observed distribution to the
representative distribution of C and M . In addition, the logarithmic term is likely
to su�er from the zero probabilities, if the observation is not su�ciently long. We
tackle this issue simply by ignoring the terms with P (i) = 0 and Q(i) = 0.

2. Jensen-Shanonn (JS) divergence, is derived from KL divergence as follows,

DJS(P ||Q) =
1

2
DKL(P ||M) +

1

2
DKL(Q||M), (9)
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where M = 1
2
(P +Q), and it has the advantage to be symmetric. Therefore, it does

not matter whether we compute DJS(P ||Q) or DJS(Q||P ), but the issue relating the
zeros in the logarithmic term pertain.

3. Earth mover's distance (EMD) is de�ned as,

EMD(P,Q) =

∑m
i=1

∑n
j=1 fi,jdi,j∑m

i=1

∑n
j=1 fi,j

, (10)

where fi,j is the �ow between pi and qj and di,j is the ground distance between pi
and qj. If the distributions are pictured as pile of dirt, the EMD represents the
minimum cost to turn one pile into the other (the cost corresponding to the amount
of dirt moved times the distance by which it is moved).

4. Log likelihood follows,
LL(P ∼ Q) = −

∑
i

pi log(qi). (11)

It represents the plausibility that the histogram of P was sampled from a distribution
Q. If Q has any zero values we skip those observations, since they make the entire
term unde�ned.

To create a decision algorithm, we compute the previous metrics for each observables.
For the Kullback-Leibler divergence, the Jensen-Shanonn divergence and the EMD, we
select the relation that minimize these distances. Conversely, for the Log Likelihood, we
select the relation that maximize it.

Table 3: Detection performance for the other proposed metrics.

Metric vg ω δ ∆η

Proposed (α = 1) 76.6 68.1 77.8 76.4
KL 77.8 37.1 67.7 81.2
JS 77.2 63.4 75.8 77.4
EMD 76.0 63.6 67.6 76.2
LL 76.8 66.3 76.3 74.8

The performance obtained using these alternative methods are detailed in Table 3 (total
accuracy for both classes), together with a comparison to the proposed method for same
observables. For the sake of brevity, we skip reporting detailed detection performance for
each class but we refer the reader to the appendix for these results.

Table 3 shows that the proposed metric has comparable or better performance to the
alternative methods. A closer look into the individual detection rates reveal that the
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alternative methods may sometimes yield a high detection rate due to a bias to sort most
observations as C, which has many more samples than M , and thus misleadingly increases
the total performance.

In addition, one important inference drawn from Table 3 is that blending all observables
into a single decision strategy improves the performance of the proposed method. It may be
worthwhile, to test whether this integration may help the alternative methods. However,
our expectation is that DKL and DJS su�er more from the zeros in the logarithmic term,
since such cases may arise more frequently (i.e from any one of the observables), reducing
the available amount of data used in the decision process. In addition, LL may have
problems concerning machine precision due to the growing number of decimal terms in the
product.

4.6 Discussion

Using only trajectory and height information of pairs of pedestrians, we are able to estimate
their social relation with over 80% accuracy. Considering the challenge of the problem, the
proposed method is regarded to achieve signi�cant accuracy.

To the best of our knowledge, this is the �rst study on detection of social relation
of interacting pedestrians. Therefore, it is not possible to compare our performance to
alternative methods. We can propose several improvements or extensions to the current
study.

First of all, in this work we considered only the coalitional and mating relations but in
the future we could extend this study to discriminate more challenging and less distinct
relations such as attachment and reciprocity.

Moreover, other methods to classify the trajectories can be imagined. One promising
idea could be to develop a neural network that takes the observables as input and returns
the probability of each relation. One basic implementation could be done with a fully
connected Multi-Layer Perceptron (a basic fully connected neural network) that takes a �x
number of observables (from portions of the trajectory) to classify. However, LSTM neural
networks would be more suited for this task, as they take in account the chronological
component of the data.

5 Detection of gestures during interactions

In this section, we study detection of gestures of interaction. We �rst choose a public
dataset with an abundant number of pedestrian dyads and annotate it for a set of gestures,
as conversation, gaze exchange, arm gestures and physical contact. Arm gestures turn out
to have the highest rate of inter-rater agreement, and we decided to develop a method for
detecting them.

The idea is that human body is subject to somewhat regular oscillations due to the
walking rhythm and any disruption of this regularity (around the wrist, elbow, shoulder
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Figure 5: Empirical distribution of (5a) δ, (5b) vg, (5c) ω and (5d) ∆η, of peers for dyads
in coalitional (C, blue), mating (M, red), attachment (A, green) and reciprocity (R,orange)
relation.
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Figure 6: Top view of the Duke University campus with the �elds of view of the cameras
used to record the DukeMTMC dataset in color.

area) can be considered to arise from a gesture within a social dyad. We propose using a
method inspired from pitch detection to pinpoint these disruptions.

5.1 Dataset

We started by searching for a dataset that could be exploited for the gesture detection task.
Many video datasets involving pedestrians are publicly available but most of them are not
suitable for studying gestures of pedestrian interaction. Some of them are based on bird's
eye view camera footage, in which pedestrian interactions can not easily be observed (BIWI
dataset [39]), whereas some datasets involve too sparse pedestrian tra�c, too short footage
or acted and unnatural behaviors (CAVIAR dataset [40], ETHZ [41], PETS 2009 [42]).

The DukeMTMC dataset, introduced in [43], is found to be the most appropriate set
for studying gestures of interacting pedestrians. It presents pedestrian tra�c �lmed at
multiple locations in the campus of the Duke University. Figure 6 shows a top view of the
�elds of view of each camera of the datasets. In addition to a very large quantity of data
(85 minutes of 1080p and 60 fps video for 8 cameras, with more than 2,000 identities), it
involves several ground truth values.

Trajectories on image coordinate frame and real-world coordinates, as well as the pose
estimations of each pedestrian, are provided as ground truth. Trajectories on image plane
are obtained by manual annotation. Namely, coders were asked to mark the feet position
of pedestrians on certain key frames and the trajectory points between those were linearly
interpolated. This gives piece-wise linear trajectories for each individual (see Figure 7). The
real-world trajectories are computed using the homography matrices of each corresponding
camera (that are also available).

In addition, a subset of this dataset (20 minutes of videos for the camera 1, 2, 4 and
5) was also annotated for groups: the DukeMTMC-Groups dataset, introduced in [44]. In
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Figure 7: Example of annotations on the DukeMTMC dataset. Yellow dots were manually
placed by coders between the feet of the pedestrians and black lines are linear interpolation
between those keyframe annotations.

Table 4: Inter-rater agreement analysis

Gesture Cohen's κ Krippendor�'s α

Speaking 0.45 0.44
Touching 0.49 0.48
Arms gesture 0.77 0.77

Gazing 0.49 0.48

Intensity - 0.64

total, 64 groups are identi�ed and tracked for an average of 400 frames per group.

In order to get the ground truth for gesture and intensity of interaction concerning
DukeMTMC-Groups dataset, we carried out an additional annotation task. Two coders
are asked to watch clips for each group on each camera and annotate the four kinds of
gestures: conversation, gaze exchange, arm gestures, physical contact. In addition, they
were asked to rank the intensity I of the interaction on a scale from 0 to 3, I = 0 being no
interaction and I = 3 the maximum level of interaction.

We performed inter-rater agreement analysis using the Cohen's kappa coe�cient (κ) and
Krippendor�'s alpha coe�cient (α) [45]. The results are displayed in Table 4. Concerning
Cohen's κ, values greater than 0.67 are often considered to be statistically reliable, and
values at the level of 0.80 are regarded to indicate to a substantial agreement. Since the
agreement is best for the arm gestures, we decided to focus on this particular interaction
in our analysis. Regarding Krippendor�'s α, there does not exist a benchmark value for
signi�cance but values around 0.66 are regarded as satisfactory [45].
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Figure 8: Schema of the OpenPose joints numbering with the elbow and shoulder angles.

5.2 Pose estimation

As mentioned in Section 5.1, pose estimation had already been performed by the research
team of the DukeMTMC dataset and is publicly available.

The pose estimations are obtained using the publicly available OpenPose library, which
is state of the art for this problem [46]. To identify joints in every frame, Cao et al. employ
body parts inference, which we brie�y explain in what follows.

The model is mainly composed of a multi-stage Convolutional Neural Network that
evaluates the con�dence maps for body parts (18 di�erent joints: right and left elbow,
right and left feet, etc.) but also for what Cao et al. call � part a�nity �elds � (PAF),
which correspond to vectors that encode the direction between the two joints for each pixel
on a given limb. Multiple iterations enable gradual re�nement of estimations so as to avoid
false detections (e.g. right wrist instead of the left).

A graph can be modeled using the detected body parts as vertices and by scoring the
edges using the part a�nity �elds with the outputs provided by the neural network. The
integral of the PAF over the line that joins the two parts gives a cost that encodes the
con�dence of the joints belonging to the same limb. In order to retrieve actual skeletons
from this graph, which is an NP Hard problem, the authors introduced a greedy algorithm
that performs well and rapidly. They actually subdivided the problem to work on smaller
bi-partite graphs (considering successively all the possible association of joints: right wrist
- right elbow, right foot - right knee, etc.) instead of considering all the joints at once.

5.3 Angles extraction

We de�ned and computed two kinds of angles: elbow and shoulder angles (see Figure 8).
Due to the occlusions or misdetections, there is the possibility of having some instability on
these values. For eliminating this sort of inconsistencies, a median �ltering (with a window
of size 9) is carried on the elbow and shoulder angles. In addition, only those pedestrians
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Figure 9: (9a) Elbow and (9a) shoulder angles before and after preprocessing.

with less than 20% of missing values along their trajectory are considered in the analysis.
Figure 9 shows elbow and shoulder angles for a pedestrian in a non-interacting dyad. It

appears that the walking motion (swinging arms or just the overall oscillations due to the
body movements) causes a certain periodicity in the signal, which we intend to identify.

After examining the empirical observations and the videos, we decided to focus on
elbow angles in our analysis mainly for the two following reasons. Firstly, the region of the
shoulder joint is inherently broader than the region of the elbow, which makes estimations
of OpenPose vary more from one frame to the next. This noisy behavior of shoulder angle
estimations and how it compares to those of elbow angles can be seen on Figure 9. In
addition, most gestures encountered in pedestrian interaction (pointing, waving, etc.) are
observed to involve more pronounced motions of the elbow rather than the shoulder, which
puts greater importance on elbow angles.

5.4 Pitch detection

The problem of retrieving the oscillation of the walking motion from the angle data is
very similar to pitch detection problems, where the goal is also to identify a low frequency
periodicity from a noisy signal. Di�erent methods exist to perform such tasks. In our
analysis, we decided to use the average magnitude di�erence function (AMDF) introduced
in [47] as,

D(τ) =
1

N − τ − 1

N−τ−1∑
n=0

|x(n)− x(n+ τ)|,

where τ is the lag number.
For mere walking action, AMDF should resemble a sine wave and have minimas at lags

corresponding to the period of the walking oscillations and its multiples (see Figure 10).
Provided that the input signal contains a prominent periodic component, its AMDF

can be approximated with a sinusoidal waveform, D(τ) ∼ y(τ), such that,

y(τ) = A sin(ωτ + φ) + c. (12)
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Figure 10: (10a) Elbow angles and (10b) AMDF.
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Figure 11: (11a) Elbow angles and (11b) AMDF and �tted sinus for a no-gesture group.

In Equation 12, A stands for the amplitude of the sinusoidal waveform, ω is its frequency,
φ is the phase and c is the o�set. If periodicity is not pronounced enough, deriving such
an approximation would not be possible. In other words, for our speci�c case, solving for
{A, ω, φ, c} would be possible, only if the limbs are subject to predominant oscillations
(possibly due to walking).

5.5 Results

Running our decision algorithm on all the groups, we obtain the confusion matrix of Table 5.
We get a precision of 0.47 and a recall of 0.90, which suggests a model biased toward positive
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Figure 12: (12a) Elbow angles and (12b) AMDF for a strong gesture group.
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Figure 13: (13a) Elbow angles and (13b) AMDF for a weak gesture group.

Table 5: Estimation performance in identi�cation of arm gestures.

Estimation
No gest. Gest.

Ground truth
No gest. 41 31
Gest. 3 27

gesture detection. Overall, the accuracy of the model is 0.68.
In Figures 12 and 13, we present two examples, where the algorithm detects the gesture

state successfully. In Figure12, the angle waveform is subject to abrupt changes, and the
AMDF curve ascertains this. Thus, the dyad is correctly identi�ed as no gesture. In
Figure13, although the waveform involves such disruptions only for a very short duration,
namely less than 2 seconds, the shape of the AMDF re�ects the existence of a gesture
clearly.

5.6 Discussion

Various sources of error that can have an impact on the performance of the model were
identi�ed:

• Pose estimation errors or gaps may arise from occlusions (by object or other peers)
and changing view angle due to taking a curve (see Figure 14). Indeed, OpenPose
detections relies on the identi�cation of body parts in the picture. If occlusions
occurs, the algorithm returns either guessed improbable detections (like for the hips
on Figure 14) or no detections (the coordinates are set to (0, 0)). While computing
the angles, if on joints is missing, the angle is ignored for this frame, but in case of
a misplaced joint, a false value will be computed.

• Actions other than gestures may be performed (e.g. switching cup from one hand
to the other). As a matter of fact, when analyzing the clips that were annotated, it
turns out that some pedestrians are engaged in arm gestures that are unrelated to
their interaction (i.e. they are not pointing at something for instance). The coders
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Figure 14: Misdetection of pose due to occlusion.

therefore did not considered these gestures, but the classi�cation algorithm detects
them, which increase the number of false-positives.

• Coder's incorrect labels. It is possible that the annotators coded a group as non
performing arm gestures, while actually some are being performed. As coders look
for gestures during the annotations process and put a positive value only when they
notice one, all positive labels can be assumed to be correct while negative ones may
be due to failure in noticing the gesture. Consequently, such errors only impact the
false-negative side of the confusion matrix.

Future work for this study would �rst require to improve the results of the skeletons
estimations to correct missing or false detections. This could be done by performing some
interpolation computation to generate skeletons by assuming regular motions of the pedes-
trians. Another more advanced idea would be to use the recent studies in the �eld of neural
network with graph input data to build a model which would, given a set of detections,
generate detections for the missing time steps.

6 Estimation of intensity of interaction

We explored the possibility of estimating intensity of interaction from the observables as
described in Section 4. People's height being unavailable in the DukeMTMC dataset, we
only computed vg, ω and δ.

The resulting empirical distributions of the observables for pedestrians interacting at a
given intensity are as given in Figure 15.

We expected to see a clearer pattern in the peak location or dispersion of the distribu-
tions. For instance, δ for I = 0 (Figure 15a), is concentrated around a smaller expected
value whereas for I = 3 the expected value as well as the tail grow. We would expect
the distributions for I = 2 and I = 1 to follow a gradual pattern between these. In other
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Figure 15: Empirical distribution of (15a) δ, (15b) vg and (15c) ω of peers for dyads
interacting at di�erent intensity levels.
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words, we would expect δ for I = 2 to have a smaller expected value and lighter tail than
for I = 3. But we observe that this hypothesis is not veri�ed as the order is reversed.

We believe that one reason that can explain these unexpected results comes from the
way that the trajectory ground truth is computed in the DukeMTMC dataset. Indeed, as
explained in Section 5.1 and illustrated on Figure 7, pedestrians feet positions are annotated
at certain frames and then the missing values are linearly interpolated. This leads to three
possible sources of error in the trajectories: (i) precision of the annotations limited when
clicking between people's feet on an image, (ii) approximation errors when projecting from
the image coordinates to the real-world coordinates, and (iii) non-realistic values due to
the interpolation. The latest is, in our opinion, the most problematic issue, as it leads to
piece-wise constant velocities.

7 Conclusion

To sum up the work exposed in this report, we proposed solutions to the tasks introduced
in Section 2, namely (i) recognition of social relations and (ii) detection of gestures.

For (i), we introduced a Bayesian model based on empirical distributions of a set of
observables computed from pedestrian trajectories. By computing the probabilities of
observables to have been sampled from a given empirical distributions, we are able to
classify the social relation of a pair of pedestrians (coalitional or mating) with an accuracy
larger than 85%.

We also compared our results for this task with global methods (see Section 4.5), based
on distributions comparison and showed that the Bayesian model gives the best perfor-
mance.

For (ii), we proposed a method based on the detection of walking motion pattern from
pedestrian arm movements. The idea is that for non-interacting pedestrians, the AMDF
of elbow angles movements should resemble a sinusoidal waveform. In case of interaction
arm gestures being performed, trying to �t such a sinusoidal function to the computed
AMDF should fail. Using this decision algorithm we obtained promising results for what
we believe to be a novel approach to pedestrians gesture detection.

We tried to apply the idea used for social relation classi�cation to di�erentiate the
intensity of interactions between pedestrians. Namely, as detailed in Section 6, we com-
puted empirical distributions of observables for trajectories of pedestrians interacting with
di�erent level of intensity. The results being inconclusive, we left it out for the time being.

Japan being very involved in the robotic industries, one possible application of this
project could be to analyse behaviors pairs of pedestrians to develop robots, that can
potentially walk along side with people in the most natural manner.
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Figure 16: Estimated schedule showing progress of the project.
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Bibliography research
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Paper redaction

Dataset research

Preprocessing

Pose estimation
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Test and review

Figure 17: Final schedule of the project.

8 Work organization

As detailed in Section 1, this internship took place in an academic context. It follows that,
although the goal to accomplish was well de�ned, the way to reach it was only drafted. A
substantial part of the project consisted in bibliography research and documentation on
the various domains that the subject covered.

Figure 16 shows the estimated schedule established six weeks after the beginning of the
internship as shown in the pre-report written at that time. Figure 17, on the other hand,
shows the actual planning that has been followed during the project.

The major di�erence is the disappearance of the �Action classi�cation�, which has
been replaced by �Arms gesture detections�. Indeed, for various reasons (limited quantity
of data, speci�city of the action to detect), the �rst idea that we had (namely, using a
STGCN-like neural network to perform action classi�cation of the pedestrians gesture)
turned out to be impractical.

9 Societal and environmental impact

This section will give some ideas of the impact of this project on an societal and environ-
mental level.
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9.1 Societal impact

For this project, the possible applications are in the �eld of robotics. As detailed in
Section 2, this could allow to created embodied agents able to follow socially acceptable
trajectories. This could be used in a variety of ways, such as guidance or assistantship for
disabled and elderly.

Relating to the privacy of the data, for the dataset used in the social relation detection
(see Section 4.1), it does not contain video of the pedestrians thus insuring their complete
anonymity. For the work on gesture detections, the DukeMTMC dataset (see Section 5.1)
is publicly available for research purpose.

9.2 Environmental impact

Regarding the environment, the �rst part of the project was ful�lled on my personal laptop
computer. It was mainly used in battery mode, being charged around two hours per
day. According to its technical documentation, this represents a power consumption of
approximately 300Wh/day. For the 21 weeks of the internship, this corresponds to a total
consumption of around 30kWh.

The project only took place in Okayama University. Except from the round trip from
France to Japan, no further travels have been performed, in the context of this internship.
Yet, this represents a substantial carbon footprint of 4t of CO2, almost twice the maximum
amount that individuals are encouraged not to exceed to prevent global warming. In terms
of power consumption, this journey corresponds to more than 8000kWh, which is roughly
equivalent to using 250 laptops during the duration of the internship.

Moreover, Okayama being a very �at city, many people (and especially students) use
bikes to move around. Likewise, I used a bike to go to work therefore limiting my environ-
mental impact, the international dormitory being very close from the university.

Japan is very involved in environmental procedure such as sorting of waste. In the
laboratory o�ce, we had two thrash cans, one for the plastic bottles and another one for
the rest of the trash. In the main buildings of the university, there were around 7 di�erent
trashes for various kind of waste: burnable, non burnable, cans, etc.
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10 Personal feedback

10.1 Work environment

On a typical day of work, I arrive at the laboratory at 9:30AM and leave around 17:30PM
(working 7.5 hours/day). I am supposed to share the laboratory with another French
student, a Chinese student and 10 Japanese students. The six �rst weeks of my internship
coincided with the end of the school year in Japan, so the laboratory was never actually
full and most of the times we were only 4 or 5 working. Dr Akito Monden's o�ce is located
in the same �oor as the students' o�ce and Dr Yücel's o�ce is located two �oors lower.

The overall ambience in the laboratory was great and the integration process went
very smoothly, probably mainly because we were all students and because of the Japanese
helpfulness and kindness. The furniture in the o�ce also re�ect this friendly environments,
with bookshelves full of mangas, coding books and retro console and games. A microwave
and a fridge are also available directly in the o�ce room. Once a week we all met with the
professors to eat together.

10.2 Bene�ts

10.2.1 Working experience

Overall, this project was a great working experience.
During my previous internships (in 1rst and 2nd year), the work that I performed was

never really connected to my orientations ideas. I mainly worked on Web development for
industrial companies, and although it was two great work experiences, it did not correspond
to the kind of task I pictured myself doing in the future.

On the other hand, during this project, I was able to concretely apply notion that I have
adressed during classes at Ensimag. In 3rd year, in the �Pattern recognition and machine
learning� lectures, we studied a bayesian model applied to face detection and during the
�nal exam, we worked on developing another bayesian model, applied to digit recognition
this time. My work on social relations detection was greatly facilitated by these previous
studies.

Moreover, I discovered new domains that I had not studied or only over�own during
my studies at Ensimag. For instance, in 2nd year for the �3D Graphic� lecture we quickly
introduced microscopic Social Force Model applied to video games or 3D crowd simulation.
During this internship, I had the opportunity to deeply improve my knowledge of this kind
of models.

On a very technical level, most of the code implemented during this internship was
Python code. I was already familiar with this langage that I have been using for a few years,
but I took some time to assimilate some good practices that I was not following before.
For instance, I used work environment, which are a great way to handle dependencies in
Python projects, especially when alternating between di�erent version in di�erent projects.

Finally, I was comforted in my desire to pursue a PhD, probably in the computer vision
and machine learning �elds of study. The technical freedom associated with research really
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suits my expectations. A big portion of this internship, as an academic research work,
consisted in looking for documentation regarding the state of the art of the diverse steps
of the project (pose estimation, action recognition, and pedestrian models) and previous
work related to the studied topics. I �nd this part of the work extremely rewarding on the
scienti�c level as it allows to dive into a wide variety of interesting methods and solutions.
Even if most of the papers describe algorithms that could not be applied on this speci�c
project, I enjoyed reading them.

10.2.2 Personal experience

I had the chance to do my internship in Okayama, Japan. This allowed me to discover
the Japanese culture, which is very di�erent from what I was used to. Japanese people
are extremely helping and always willing to assist in case of di�cult situations. Neverthe-
less, administration is very rigorous and respecting deadlines and regulations is especially
important.

Moreover, I had the opportunity to meet a large number of people during this project,
not only students from my laboratory but also from the dormitory and other laboratories
accros the university. This turned out to be a great human experience and a chance for
me to get to know new people from all over the world.

Okayama is a very well situated city in Japan. As a matter of fact, it is close to big
cities such as Osaka or Kyoto which are great to visit. The weather is also particularly nice
in Okayama prefecture which is rightfully known as the �Land of Sunshine �. I had the
chance to be in Japan during the cherry blossom and participate to Hanami, the traditional
custom during which Japanese people admire the �owering of the cherry trees.

10.3 Di�culties

In relation to the project, the main di�culties that I experienced were linked with environ-
ment issues. I started working on my personal Mac Book Pro but many algorithms that I
needed to use to test feasibility of considered solutions required an NVidia GPU. Indeed,
most machine learning algorithms require heavy computation that is generally accelerated
on GPU, very often using the CUDA toolkit that integrates well with traditional machine
learning libraries such as Torch or Tensor�ow. I started preprocessing the video data until
I could use the wanted algorithms on a new computer.

On advantage of the research domain is the freedom of choice when designing a solu-
tions. However a drawback is that there is generally no guarantee that the project will
complete. Moreover, the solution might drastically change during if it turns out not to be
viable. As detailed in Section 8, I started working on action recognition algorithms and
I was planning to use methods based on STGCN [36] to classify the gestures. This idea
turned out to be unpracticable due to the speci�city of the action that had to be detected
as well as the relatively small quantity of data.
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A Detailed performance of alternative methods for recog-

nition of social relation

Table 6: Detailed performance rates for recognition of social relations using KL divergence.

vg ω δ ∆η

M 71.15± 7.30 90.58± 12.40 78.37± 7.83 44.81± 7.38
C 81.09± 4.50 24.73± 15.40 69.40± 10.75 92.60± 2.04
Total 78.90 39.27 71.38 82.04

Table 7: Detailed performance rates for recognition of social relations using JS divergence.

vg ω δ ∆η

M 72.60± 7.27 68.46± 5.10 72.12± 4.65 55.96± 4.55
C 79.13± 2.88 64.07± 7.98 78.77± 5.79 85.00± 3.57
Total 77.68 65.04 77.30 78.59

Table 8: Detailed performance rates for recognition of social relations using EMD.

vg ω δ ∆η

M 76.06± 6.03 63.37± 5.11 74.23± 4.19 59.33± 5.78
C 76.45± 3.19 64.02± 4.37 67.51± 6.06 82.62± 3.37
Total 63.87 76.36 69.00 77.48
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Table 9: Detailed performance rates for recognition of social relations using Log-likelihood.

vg ω δ ∆η

M 73.94± 6.19 63.46± 7.30 72.12± 4.19 60.38± 6.12
C 78.20± 2.78 68.11± 8.50 78.93± 5.03 81.31± 4.10
Total 77.26 67.09 77.43 76.69
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C French abstract

Ce rapport présente le travail réalisé dans le cadre d'un PFE se déroulant en milieu
académique, à l'université d'Okayama, au Japon. Le Dr Zeynep Yücel, superviseure de ce
stage, travaille depuis plusieurs années sur la problématique de la modélisation de mou-
vement de foule et cette étude étend ces travaux. Des résultats dans ce domaine sont
particulièrement utiles dans les domaines de la robotique, de la video surveillance ou de la
conduite autonome.

Les objectifs du projet sont doubles : (i) la reconnaissance de relations sociales et (ii)
la detection de gestes. Pour (i) une méthode probabiliste avec une approche Bayesienne a
été développé et pour (ii) une méthode inspirée du traitement de signal audio est proposée.

Pour étudier la reconnaissance de relations sociales, le jeu de données est composé des
trajectoires (coordonnées et vitesses) et des tailles des piétons, obtenues préalablement
à l'aide d'un environnement de traçage. Un ensemble de données sont calculées pour les
trajectoires de paires de piétons : la vitesse du groupe, la di�érence de vitesse des membres
du groupe, la di�érence de tailles et la distance entre les membres. Le modèle Bayesien
développé calcule la probabilité qu'un groupe de piétons soit engagé dans une relation
donnée connaissant les variables précédemment introduites.

Ce modèle est également comparé avec des méthodes de comparaison globale de dis-
tributions, à savoir la divergence de Kullback-Leibler, la divergence de Jensen-Shanonn,
la distance du cantonnier et la log-likelihood. Les meilleurs résultats sont obtenus avec le
modèle Bayesien et sont de l'ordre de 80% de précision.

Pour la détection des gestes, le jeu de données DukeMTMC-Groups est utilisé. En
plus des annotions de groupes déjà présentes, il a également du être annoté pour relever la
présence d'un ensemble de gestes : conversation, échange de regards, contact physique et
mouvements des bras. Cependant, seul ce dernier geste est considéré dans cette étude.

L'idée développée ici est que le corps humain est sujet à des oscillations relativement
régulières causées par le rythme de marche et que des irrégularités dans ces oscillations
(autour des poignets, coudes et épaules) peuvent être considérées comme provenant d'un
geste, au sein d'une paire de piétons. Pour detecter et analyser ces irrégularités, une
méthode inspirée de la detection de tonalité est utilisée.

Des poses générées par la librairie OpenPose sont utilisées pour calculer l'angle de
l'articulation du coude des piétons à chaque image. L'AMDF (average magnitude di�erence
function) du signal est calculée et une fonction sinusoïdale est paramétrée pour approcher
la courbe au plus près. Dans le cas où la fonction ne peut pas su�samment être assimilée
à une fonction sinusoïdale, on peut considérer qu'un geste est e�ectué. En utilisant cet
algorithme décisionnel, la précision obtenue est de 68%, et le modèle semble biaisé en faveur
de résultats positifs (i.e. geste e�ectué).

A�n d'améliorer ce modèle, les principales sources d'erreurs sont analysées et des pistes
de solutions sont proposées (amelioration de la cohérence des poses détectées par exemple).
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